Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Is the following function even, odd, or neither?\newlinef(x)=2(x+3)f(x)=2^{(x+3)}\newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither

Full solution

Q. Is the following function even, odd, or neither?\newlinef(x)=2(x+3)f(x)=2^{(x+3)}\newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither
  1. Determine Function Type: To determine if the function f(x)f(x) is even, odd, or neither, we need to compare f(x)f(x) with f(x)f(-x). If f(x)=f(x)f(-x) = f(x), then the function is even. If f(x)=f(x)f(-x) = -f(x), then the function is odd. If neither condition is met, the function is neither even nor odd.
  2. Substitute x-x: Let's find f(x)f(-x) by substituting x-x for xx in the function f(x)=2(x+3)f(x)=2^{(x+3)}.\newlinef(x)=2(x+3)f(-x) = 2^{(-x+3)}
  3. Compare f(x)f(-x) with f(x)f(x): Now, we need to compare f(x)f(-x) with f(x)f(x). We have f(x)=2(x+3)f(x) = 2^{(x+3)} and f(x)=2(x+3)f(-x) = 2^{(-x+3)}. These two expressions are not the same, and f(x)f(-x) is not the negative of f(x)f(x), so the function is neither even nor odd.

More problems from Even and odd functions