Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Is (3, 10)(3,\ 10) a solution to this system of inequalities?\newlinex3x \geq 3\newliney > x + 5\newlineChoices:\newline(A)yes\newline(B)no

Full solution

Q. Is (3, 10)(3,\ 10) a solution to this system of inequalities?\newlinex3x \geq 3\newliney>x+5y > x + 5\newlineChoices:\newline(A)yes\newline(B)no
  1. Check x3x \geq 3: Check if the point (3,10)(3, 10) satisfies the inequality x3x \geq 3.\newlineSubstitute 33 for xx.\newline333 \geq 3\newlineSince 33 is equal to 33, the point (3,10)(3, 10) satisfies the inequality x3x \geq 3.
  2. Check y > x + 5: Check if the point (3,10)(3, 10) satisfies the inequality y > x + 5. Substitute 33 for xx and 1010 for yy. 10 > 3 + 5 10 > 8 Since 1010 is greater than (3,10)(3, 10)00, the point (3,10)(3, 10) satisfies the inequality y > x + 5.
  3. Determine solution to system: Determine if (3,10)(3, 10) is a solution to the system of inequalities.\newlineSince the point (3,10)(3, 10) satisfies both inequalities x3x \geq 3 and y > x + 5, it is a solution to the system of inequalities.

More problems from Is (x, y) a solution to the system of linear inequalities?