Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Is (1, 6)(1,\ 6) a solution to this system of inequalities?\newlineyx+7y \leq x + 7\newliney3x+3y \geq 3x + 3\newlineChoices:\newline(A)yes\newline(B)no

Full solution

Q. Is (1, 6)(1,\ 6) a solution to this system of inequalities?\newlineyx+7y \leq x + 7\newliney3x+3y \geq 3x + 3\newlineChoices:\newline(A)yes\newline(B)no
  1. Check Point (1,6)(1, 6): Does the point (1,6)(1, 6) satisfy the inequality yx+7y \leq x + 7?\newlineSubstitute 11 for xx and 66 for yy in yx+7y \leq x + 7.\newline61+76 \leq 1 + 7\newline686 \leq 8\newlineSince 686 \leq 8 is true, (1,6)(1, 6) satisfies yx+7y \leq x + 7.
  2. Substitute in Inequality: Does the point (1,6)(1, 6) satisfy the inequality y3x+3y \geq 3x + 3?\newlineSubstitute 11 for xx and 66 for yy in y3x+3y \geq 3x + 3.\newline63(1)+36 \geq 3(1) + 3\newline63+36 \geq 3 + 3\newline666 \geq 6\newlineSince 666 \geq 6 is true, (1,6)(1, 6) satisfies y3x+3y \geq 3x + 3.
  3. Verify Inequality: Is (1,6)(1, 6) a solution to the system of inequalities?\newlineSince (1,6)(1, 6) satisfies both inequalities yx+7y \leq x + 7 and y3x+3y \geq 3x + 3, it is a solution to the system of inequalities.

More problems from Is (x, y) a solution to the system of linear inequalities?