Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Is (1,2)(1,\,2) a solution to this system of inequalities?\newline2x+y42x + y \geq 4\newline11x+4y2011x + 4y \geq 20\newlineChoices:\newline(A)yes\newline(B)no

Full solution

Q. Is (1,2)(1,\,2) a solution to this system of inequalities?\newline2x+y42x + y \geq 4\newline11x+4y2011x + 4y \geq 20\newlineChoices:\newline(A)yes\newline(B)no
  1. Check Point 1,21, 2: Check if the point 1,21, 2 satisfies the inequality 2x+y42x + y \geq 4.\newlineSubstitute x=1x = 1 and y=2y = 2 into the inequality 2x+y42x + y \geq 4.\newline2(1)+242(1) + 2 \geq 4\newline2+242 + 2 \geq 4\newline444 \geq 4\newlineThe point 1,21, 2 satisfies the inequality 2x+y42x + y \geq 4.
  2. Check Inequality 11: Check if the point (1,2)(1, 2) satisfies the inequality 11x+4y2011x + 4y \geq 20. Substitute x=1x = 1 and y=2y = 2 into the inequality 11x+4y2011x + 4y \geq 20. 11(1)+4(2)2011(1) + 4(2) \geq 20 11+82011 + 8 \geq 20 192019 \geq 20 The point (1,2)(1, 2) does not satisfy the inequality 11x+4y2011x + 4y \geq 20.
  3. Check Inequality 22: Determine if (1,2)(1, 2) is a solution to the system of inequalities.\newlineSince the point (1,2)(1, 2) satisfies the first inequality but does not satisfy the second inequality, it is not a solution to the system of inequalities.

More problems from Is (x, y) a solution to the system of inequalities?