Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Is (1,1)(1,\,1) a solution to this system of inequalities?\newlinex+12y13x + 12y \geq 13\newline3x+16y193x + 16y \geq 19\newlineChoices:\newline(A)yes\newline(B)no

Full solution

Q. Is (1,1)(1,\,1) a solution to this system of inequalities?\newlinex+12y13x + 12y \geq 13\newline3x+16y193x + 16y \geq 19\newlineChoices:\newline(A)yes\newline(B)no
  1. Check Point (1,1)(1, 1): Does the point (1,1)(1, 1) satisfy the inequality x+12y13x + 12y \geq 13?\newlineSubstitute x=1x = 1 and y=1y = 1 into the inequality x+12y13x + 12y \geq 13.\newline1+12×1131 + 12 \times 1 \geq 13\newline1+12131 + 12 \geq 13\newline131313 \geq 13\newlineThe point (1,1)(1, 1) satisfies the inequality x+12y13x + 12y \geq 13.
  2. Check Point (1,1)(1, 1): Does the point (1,1)(1, 1) satisfy the inequality 3x+16y193x + 16y \geq 19?\newlineSubstitute x=1x = 1 and y=1y = 1 into the inequality 3x+16y193x + 16y \geq 19.\newline3×1+16×1193 \times 1 + 16 \times 1 \geq 19\newline3+16193 + 16 \geq 19\newline191919 \geq 19\newlineThe point (1,1)(1, 1) satisfies the inequality 3x+16y193x + 16y \geq 19.
  3. Verify Solution 1,11, 1: Is 1,11, 1 a solution to the system of inequalities?\newlineSince 1,11, 1 satisfies both inequalities:\newlinex+12y13x + 12y \geq 13\newline3x+16y193x + 16y \geq 19\newlineThe point 1,11, 1 is indeed a solution to the system of inequalities.

More problems from Is (x, y) a solution to the system of inequalities?