Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Is (1, 1)(1,\ 1) a solution to this system of inequalities?\newline10x+4y1410x + 4y \geq 14\newline9x + y < 13\newlineChoices:\newline(A)yes\newline(B)no

Full solution

Q. Is (1, 1)(1,\ 1) a solution to this system of inequalities?\newline10x+4y1410x + 4y \geq 14\newline9x+y<139x + y < 13\newlineChoices:\newline(A)yes\newline(B)no
  1. Check Point 1,11, 1: Does the point 1,11, 1 satisfy the inequality 10x+4y1410x + 4y \geq 14?\newlineSubstitute 11 for xx and 11 for yy in 10x+4y1410x + 4y \geq 14.\newline10(1)+4(1)1410(1) + 4(1) \geq 14\newline10+41410 + 4 \geq 14\newline1,11, 100\newlineSince 1,11, 100 is true, 1,11, 1 satisfies the inequality 10x+4y1410x + 4y \geq 14.
  2. Verify Inequality 10x+4y1410x + 4y \geq 14: Does the point (1,1)(1, 1) satisfy the inequality 9x + y < 13?\newlineSubstitute 11 for xx and 11 for yy in 9x + y < 13.\newline9(1) + 1 < 13\newline9 + 1 < 13\newline(1,1)(1, 1)00\newlineSince (1,1)(1, 1)00 is true, (1,1)(1, 1) satisfies the inequality 9x + y < 13.
  3. Verify Inequality 9x + y < 13: Is (1,1)(1, 1) a solution to the system of inequalities?\newlineSince (1,1)(1, 1) satisfies both inequalities 10x+4y1410x + 4y \geq 14 and 9x + y < 13, (1,1)(1, 1) is indeed a solution to the system of inequalities.

More problems from Is (x, y) a solution to the system of linear inequalities?