Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

intsin^(3)xdx=

sin3xdx \int \sin ^{3} x d x =

Full solution

Q. sin3xdx \int \sin ^{3} x d x =
  1. Recognize Problem: Recognize the integral that needs to be solved.\newlineWe need to integrate sin3(x)\sin^3(x) with respect to xx.
  2. Use Identity: Use the identity sin2(x)=1cos2(x)\sin^2(x) = 1 - \cos^2(x) to rewrite sin3(x)\sin^3(x) as sin(x)sin2(x)\sin(x) \cdot \sin^2(x).\newlinesin3(x)=sin(x)(1cos2(x))\sin^3(x) = \sin(x) \cdot (1 - \cos^2(x))
  3. Substitute and Split: Substitute sin2(x)\sin^2(x) in the integral.\newlinesin3(x)dx=sin(x)(1cos2(x))dx\int \sin^3(x)\,dx = \int \sin(x) \cdot (1 - \cos^2(x))\,dx
  4. Integrate sin(x)\sin(x): Split the integral into two separate integrals.\newline\int\sin(x) \cdot (\(1 - \cos^22(x))\,dx = \int\sin(x)\,dx - \int\sin(x)\cos^22(x)\,dx
  5. Use Substitution: Integrate the first part sin(x)dx\int \sin(x)\,dx. The integral of sin(x)\sin(x) with respect to xx is cos(x)-\cos(x). So, sin(x)dx=cos(x)\int \sin(x)\,dx = -\cos(x)
  6. Integrate u2u^2: Use substitution to integrate the second part sin(x)cos2(x)dx\int \sin(x)\cos^2(x)\,dx. Let u=cos(x)u = \cos(x), then du=sin(x)dxdu = -\sin(x)\,dx. Rewrite the integral: u2du-\int u^2\,du
  7. Substitute back: Integrate u2du-\int u^2\,du.\newlineThe integral of u2u^2 with respect to uu is (1/3)u3(1/3)u^3.\newlineSo, u2du=(1/3)u3-\int u^2\,du = -(1/3)u^3
  8. Combine Results: Substitute back cos(x)\cos(x) for uu.\newline13u3-\frac{1}{3}u^3 becomes 13cos3(x)-\frac{1}{3}\cos^3(x).
  9. Combine Results: Substitute back cos(x)\cos(x) for uu.13u3-\frac{1}{3}u^3 becomes 13cos3(x)-\frac{1}{3}\cos^3(x).Combine the results from Step 55 and Step 88. The final answer is the sum of the two integrals: cos(x)13cos3(x)+C-\cos(x) - \frac{1}{3}\cos^3(x) + C, where CC is the constant of integration.

More problems from Power property of logarithms