Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In 
/_\HIJ,m/_H=(6x+10)^(@),m/_I=(3x-6)^(@), and 
m/_J=(6x+11)^(@).
Find 
m/_J.
Answer:

In HIJ,mH=(6x+10),mI=(3x6) \triangle \mathrm{HIJ}, \mathrm{m} \angle H=(6 x+10)^{\circ}, \mathrm{m} \angle I=(3 x-6)^{\circ} , and mJ=(6x+11) \mathrm{m} \angle J=(6 x+11)^{\circ} .\newlineFind mJ \mathrm{m} \angle J .\newlineAnswer:

Full solution

Q. In HIJ,mH=(6x+10),mI=(3x6) \triangle \mathrm{HIJ}, \mathrm{m} \angle H=(6 x+10)^{\circ}, \mathrm{m} \angle I=(3 x-6)^{\circ} , and mJ=(6x+11) \mathrm{m} \angle J=(6 x+11)^{\circ} .\newlineFind mJ \mathrm{m} \angle J .\newlineAnswer:
  1. Recognize Triangle Angle Sum: First, recognize that the sum of the angles in any triangle is 180180 degrees.
  2. Write Equation for Triangle HIJ: Write an equation that represents the sum of the angles in triangle HIJ.\newlinem/_H+m/_I+m/_J=180m/\_H + m/\_I + m/\_J = 180^{\circ}
  3. Substitute Given Expressions: Substitute the given expressions for m/Hm/_{H}, m/Im/_{I}, and m/Jm/_{J} into the equation.\newlineegin{equation}(66x + 1010)^{22} + (33x - 66)^{22} + (66x + 1111)^{22} = 180180^{22}\newlineegin{equation}
  4. Combine Like Terms: Combine like terms to simplify the equation. 6x+10+3x6+6x+11=1806x + 10 + 3x - 6 + 6x + 11 = 180
  5. Isolate Variable Term: Further simplify the equation by combining like terms. 15x+15=18015x + 15 = 180
  6. Solve for x: Subtract 1515 from both sides to isolate the term with the variable xx.\newline15x+1515=1801515x + 15 - 15 = 180 - 15\newline15x=16515x = 165
  7. Substitute xx into m/Jm/_J Expression: Divide both sides by 1515 to solve for xx.\newline15x15=16515\frac{15x}{15} = \frac{165}{15}\newlinex=11x = 11
  8. Calculate m/Jm/_{J} Value: Now that we have the value of xx, substitute it back into the expression for m/Jm/_{J} to find the measure of angle JJ.
    m/J=(6x+11)@m/_{J} = (6x + 11)^{@}
    m/J=(6(11)+11)@m/_{J} = (6(11) + 11)^{@}
  9. Calculate m/Jm/_{J} Value: Now that we have the value of xx, substitute it back into the expression for m/Jm/_{J} to find the measure of angle JJ.\newlinem/J=(6x+11)@m/_{J} = (6x + 11)^{@}\newlinem/J=(6(11)+11)@m/_{J} = (6(11) + 11)^{@}Calculate the value of m/Jm/_{J}.\newlinem/J=(66+11)@m/_{J} = (66 + 11)^{@}\newlinem/J=77@m/_{J} = 77^{@}