Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In 
/_\DEF,m/_D=(10 x-13)^(@),m/_E=(x-4)^(@), and 
m/_F=(2x+15)^(@). Find 
m/_E.
Answer:

In DEF,mD=(10x13),mE=(x4) \triangle \mathrm{DEF}, \mathrm{m} \angle D=(10 x-13)^{\circ}, \mathrm{m} \angle E=(x-4)^{\circ} , and mF=(2x+15) \mathrm{m} \angle F=(2 x+15)^{\circ} . Find mE \mathrm{m} \angle E .\newlineAnswer:

Full solution

Q. In DEF,mD=(10x13),mE=(x4) \triangle \mathrm{DEF}, \mathrm{m} \angle D=(10 x-13)^{\circ}, \mathrm{m} \angle E=(x-4)^{\circ} , and mF=(2x+15) \mathrm{m} \angle F=(2 x+15)^{\circ} . Find mE \mathrm{m} \angle E .\newlineAnswer:
  1. Recognize Triangle Angle Sum: Recognize that the sum of the angles in any triangle is 180180 degrees.\newlineUsing the angle sum property of triangles: \newlinem/_D+m/_E+m/_F=180m/\_D + m/\_E + m/\_F = 180 degrees
  2. Substitute Given Expressions: Substitute the given expressions for m/Dm/_{D}, m/Em/_{E}, and m/Fm/_{F} into the angle sum equation.\newline(10x13)+(x4)+(2x+15)=180(10x - 13) + (x - 4) + (2x + 15) = 180
  3. Combine Like Terms: Combine like terms on the left side of the equation.\newline10x13+x4+2x+15=18010x - 13 + x - 4 + 2x + 15 = 180\newline13x2=18013x - 2 = 180
  4. Add to Isolate Terms: Add 22 to both sides of the equation to isolate the terms with xx on one side.\newline13x2+2=180+213x - 2 + 2 = 180 + 2\newline13x=18213x = 182
  5. Divide to Solve for x: Divide both sides of the equation by 1313 to solve for x.\newline13x13=18213\frac{13x}{13} = \frac{182}{13}\newlinex=14x = 14
  6. Substitute Value of xx: Substitute the value of xx back into the expression for m/_Em/\_E to find the measure of angle E.\newlinem/_E=(x4)m/\_E = (x - 4) degrees\newlinem/_E=(144)m/\_E = (14 - 4) degrees\newlinem/_E=10m/\_E = 10 degrees