Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In 
/_\DEF,f=83cm,e=60cm and 
/_E=29^(@). Find all possible values of 
/_F, to the nearest 1oth of a degree.
Answer:

In DEF,f=83 cm,e=60 cm \triangle \mathrm{DEF}, f=83 \mathrm{~cm}, e=60 \mathrm{~cm} and E=29 \angle \mathrm{E}=29^{\circ} . Find all possible values of F \angle \mathrm{F} , to the nearest 1010th of a degree.\newlineAnswer:

Full solution

Q. In DEF,f=83 cm,e=60 cm \triangle \mathrm{DEF}, f=83 \mathrm{~cm}, e=60 \mathrm{~cm} and E=29 \angle \mathrm{E}=29^{\circ} . Find all possible values of F \angle \mathrm{F} , to the nearest 1010th of a degree.\newlineAnswer:
  1. Calculate sin(E)\sin(E): We can use the Law of Sines to find the possible values of angle F. The Law of Sines states that in any triangle, the ratio of the length of a side to the sine of its opposite angle is constant. That is, for triangle DEF:\newlinesin(E)e=sin(F)f\frac{\sin(E)}{e} = \frac{\sin(F)}{f}\newlineFirst, we need to calculate sin(E)\sin(E).\newlinesin(E)=sin(29 degrees)\sin(E) = \sin(29 \text{ degrees})
  2. Plug values into formula: Now we plug the values into the Law of Sines formula to find sin(F)\sin(F).sin(F)f=sin(E)e\frac{\sin(F)}{f} = \frac{\sin(E)}{e}sin(F)83=sin(29 degrees)60\frac{\sin(F)}{83} = \frac{\sin(29 \text{ degrees})}{60}
  3. Solve for sin(F)\sin(F): We solve for sin(F)\sin(F).sin(F)=(sin(29)60)×83\sin(F) = \left(\frac{\sin(29^\circ)}{60}\right) \times 83
  4. Calculate sin(F)\sin(F): We calculate the value of sin(F)\sin(F).sin(F)=(sin(29)60)83\sin(F) = \left(\frac{\sin(29^\circ)}{60}\right) * 83sin(F)(0.484860)83\sin(F) \approx \left(\frac{0.4848}{60}\right) * 83sin(F)0.6706\sin(F) \approx 0.6706
  5. Correct calculation error: Since the sine of an angle cannot be greater than 11, we must have made a calculation error in the previous step. Let's correct it.\newlinesin(F)=sin(29)60×83\sin(F) = \frac{\sin(29^\circ)}{60} \times 83\newlinesin(F)0.484860×83\sin(F) \approx \frac{0.4848}{60} \times 83\newlinesin(F)0.6706\sin(F) \approx 0.6706\newlineThis is incorrect because sin(29)0.4848\sin(29^\circ) \approx 0.4848 is already less than 11, so multiplying it by a fraction 8360\frac{83}{60} should give us a number less than 0.48480.4848.

More problems from Solve exponential equations by rewriting the base