Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In 
/_\BCD, bar(BD) is extended through point 
D to point 
E,m/_CDE=(6x+7)^(@), 
m/_BCD=(3x+9)^(@), and 
m/_DBC=(x+20)^(@). What is the value of 
x?
Answer:

In BCD,BD \triangle \mathrm{BCD}, \overline{B D} is extended through point D \mathrm{D} to point E,mCDE=(6x+7) \mathrm{E}, \mathrm{m} \angle C D E=(6 x+7)^{\circ} , mBCD=(3x+9) \mathrm{m} \angle B C D=(3 x+9)^{\circ} , and mDBC=(x+20) \mathrm{m} \angle D B C=(x+20)^{\circ} . What is the value of x? x ? \newlineAnswer:

Full solution

Q. In BCD,BD \triangle \mathrm{BCD}, \overline{B D} is extended through point D \mathrm{D} to point E,mCDE=(6x+7) \mathrm{E}, \mathrm{m} \angle C D E=(6 x+7)^{\circ} , mBCD=(3x+9) \mathrm{m} \angle B C D=(3 x+9)^{\circ} , and mDBC=(x+20) \mathrm{m} \angle D B C=(x+20)^{\circ} . What is the value of x? x ? \newlineAnswer:
  1. Triangle Interior Angles: We know that the sum of the interior angles in any triangle is 180180 degrees. Since triangle BCD is extended to form an exterior angle at point D, the exterior angle CDE is equal to the sum of the two non-adjacent interior angles, which are angle BCD and angle DBC.\newlineSo, we can write the equation:\newlinem/_CDE=m/_BCD+m/_DBCm/\_CDE = m/\_BCD + m/\_DBC\newlineSubstitute the given angle measures into the equation:\newline(6x+7)=(3x+9)+(x+20)(6x + 7) = (3x + 9) + (x + 20)
  2. Exterior Angle Calculation: Now, we will combine like terms on the right side of the equation:\newline(6x+7)=(3x+9)+(x+20)(6x + 7) = (3x + 9) + (x + 20)\newline(6x+7)=3x+9+x+20(6x + 7) = 3x + 9 + x + 20\newline(6x+7)=4x+29(6x + 7) = 4x + 29
  3. Combine Like Terms: Next, we will isolate the variable xx by subtracting 4x4x from both sides of the equation:\newline6x+74x=4x+294x6x + 7 - 4x = 4x + 29 - 4x\newline2x+7=292x + 7 = 29
  4. Isolate Variable xx: Now, we will subtract 77 from both sides to solve for xx:2x+77=2972x + 7 - 7 = 29 - 72x=222x = 22
  5. Solve for x: Finally, we will divide both sides by 22 to find the value of x:\newline2x2=222\frac{2x}{2} = \frac{22}{2}\newlinex=11x = 11