Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-y-y^(2)+y^(3)=3x^(2) then find 
(dy)/(dx) in terms of 
x and 
y.
Answer: 
(dy)/(dx)=

If yy2+y3=3x2 -y-y^{2}+y^{3}=3 x^{2} then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. If yy2+y3=3x2 -y-y^{2}+y^{3}=3 x^{2} then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Identify Given Equation: Identify the given equation and the requirement to differentiate with respect to xx.\newlineGiven equation: yy2+y3=3x2-y - y^2 + y^3 = 3x^2\newlineWe need to find dydx\frac{dy}{dx}.
  2. Differentiate with Respect: Differentiate both sides of the equation with respect to xx, using implicit differentiation.\newlineddx(yy2+y3)=ddx(3x2)\frac{d}{dx}(-y - y^2 + y^3) = \frac{d}{dx}(3x^2)
  3. Apply Chain Rule: Apply the chain rule to differentiate the terms involving yy with respect to xx.
    ddx(y)=dydx\frac{d}{dx}(-y) = -\frac{dy}{dx}
    ddx(y2)=2ydydx\frac{d}{dx}(-y^2) = -2y \cdot \frac{dy}{dx}
    ddx(y3)=3y2dydx\frac{d}{dx}(y^3) = 3y^2 \cdot \frac{dy}{dx}
    ddx(3x2)=6x\frac{d}{dx}(3x^2) = 6x
    So, dydx2y(dydx)+3y2(dydx)=6x-\frac{dy}{dx} - 2y(\frac{dy}{dx}) + 3y^2(\frac{dy}{dx}) = 6x
  4. Combine Like Terms: Combine like terms and solve for dydx\frac{dy}{dx}.dydx2ydydx+3y2dydx=6x\frac{-dy}{dx} - 2y\frac{dy}{dx} + 3y^2\frac{dy}{dx} = 6xdydx(12y+3y2)=6x\frac{dy}{dx}(-1 - 2y + 3y^2) = 6x
  5. Isolate dydx\frac{dy}{dx}: Isolate dydx\frac{dy}{dx} on one side of the equation.\newlinedydx=6x12y+3y2\frac{dy}{dx} = \frac{6x}{-1 - 2y + 3y^2}

More problems from Evaluate exponential functions