Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-x-xy=-y^(3) then find 
(dy)/(dx) in terms of 
x and 
y.
Answer: 
(dy)/(dx)=

If xxy=y3 -x-x y=-y^{3} then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. If xxy=y3 -x-x y=-y^{3} then find dydx \frac{d y}{d x} in terms of x x and y y .\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Differentiate with respect to xx: We are given the equation xxy=y3-x - xy = -y^3. To find dydx\frac{dy}{dx}, we need to differentiate both sides of the equation with respect to xx, treating yy as a function of xx (implicit differentiation).\newlineDifferentiate both sides of the equation with respect to xx:\newlineddx(xxy)=ddx(y3)\frac{d}{dx}(-x - xy) = \frac{d}{dx}(-y^3)\newlineThis gives us:\newline1(xddx(y)+yddx(x))=3y2ddx(y)-1 - (x \cdot \frac{d}{dx}(y) + y \cdot \frac{d}{dx}(x)) = -3y^2 \cdot \frac{d}{dx}(y)\newlineSimplify the differentiation:\newline1(xdydx+y1)=3y2dydx-1 - (x \cdot \frac{dy}{dx} + y \cdot 1) = -3y^2 \cdot \frac{dy}{dx}
  2. Simplify the expression: Now we have an equation with dydx\frac{dy}{dx} terms that we can solve for dydx\frac{dy}{dx}:
    1xdydxy=3y2dydx-1 - x\frac{dy}{dx} - y = -3y^2\frac{dy}{dx}
    Rearrange the terms to isolate dydx\frac{dy}{dx} on one side:
    xdydx+3y2dydx=1+yx\frac{dy}{dx} + 3y^2\frac{dy}{dx} = -1 + y
    Factor out dydx\frac{dy}{dx} from the left side:
    dydx(x+3y2)=1+y\frac{dy}{dx}(x + 3y^2) = -1 + y
  3. Isolate dydx\frac{dy}{dx}: Finally, divide both sides by (x+3y2)(x + 3y^2) to solve for dydx\frac{dy}{dx}:dydx=1+yx+3y2\frac{dy}{dx} = \frac{-1 + y}{x + 3y^2}This is the derivative of yy with respect to xx in terms of xx and yy.

More problems from Evaluate an exponential function