Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(x) is an exponential function where 
f(-1.5)=26 and 
f(5.5)=7, then find the value of 
f(10), to the nearest hundredth.

If f(x) f(x) is an exponential function where f(1.5)=26 f(-1.5)=26 and f(5.5)=7 f(5.5)=7 , then find the value of f(10) f(10) , to the nearest hundredth.

Full solution

Q. If f(x) f(x) is an exponential function where f(1.5)=26 f(-1.5)=26 and f(5.5)=7 f(5.5)=7 , then find the value of f(10) f(10) , to the nearest hundredth.
  1. Given Points and Function Form: We are given two points on the exponential function: (1.5,26)(-1.5, 26) and (5.5,7)(5.5, 7). We can use these points to find the base of the exponential function. The general form of an exponential function is f(x)=abxf(x) = a \cdot b^x, where aa is the initial value and bb is the base.
  2. Set Up Equations: First, we need to set up two equations using the given points and the general form of the exponential function:\newline11) 26=ab1.526 = a \cdot b^{-1.5}\newline22) 7=ab5.57 = a \cdot b^{5.5}
  3. Solve for Base: We can solve these equations simultaneously to find the values of aa and bb. Let's divide the second equation by the first equation to eliminate the variable aa:(726)=ab5.5ab1.5\left(\frac{7}{26}\right) = \frac{a \cdot b^{5.5}}{a \cdot b^{-1.5}}
  4. Calculate Value of b: Simplifying the right side of the equation, we get:\newline(726)=b(5.5+1.5)(\frac{7}{26}) = b^{(5.5 + 1.5)}\newline(726)=b7(\frac{7}{26}) = b^7
  5. Find Value of a: Now we can find the value of bb by taking the 77th root of both sides:\newlineb=(726)17b = \left(\frac{7}{26}\right)^{\frac{1}{7}}
  6. Write Exponential Function: Calculating the value of bb:b(0.26923)17b \approx (0.26923)^{\frac{1}{7}}b0.76923b \approx 0.76923
  7. Find f(10)f(10): Now that we have the value of bb, we can use one of the original equations to find the value of aa. Let's use the first equation:\newline26=ab1.526 = a \cdot b^{-1.5}
  8. Find f(10)f(10): Now that we have the value of bb, we can use one of the original equations to find the value of aa. Let's use the first equation:\newline26=ab1.526 = a \cdot b^{-1.5}Substitute the value of bb into the equation:\newline26=a(0.76923)1.526 = a \cdot (0.76923)^{-1.5}
  9. Find f(10)f(10): Now that we have the value of bb, we can use one of the original equations to find the value of aa. Let's use the first equation:\newline26=ab1.526 = a \cdot b^{-1.5}Substitute the value of bb into the equation:\newline26=a(0.76923)1.526 = a \cdot (0.76923)^{-1.5}Solve for aa:\newlinea26/(0.76923)1.5a \approx 26 / (0.76923)^{-1.5}\newlinea26/2.21868a \approx 26 / 2.21868\newlinea11.717a \approx 11.717
  10. Find f(10)f(10): Now that we have the value of bb, we can use one of the original equations to find the value of aa. Let's use the first equation:\newline26=ab1.526 = a \cdot b^{-1.5} Substitute the value of bb into the equation:\newline26=a(0.76923)1.526 = a \cdot (0.76923)^{-1.5} Solve for aa:\newlinea26/(0.76923)1.5a \approx 26 / (0.76923)^{-1.5}\newlinea26/2.21868a \approx 26 / 2.21868\newlinea11.717a \approx 11.717 Now we have both aa and bb, and we can write the exponential function as:\newlinebb22
  11. Find f(10)f(10): Now that we have the value of bb, we can use one of the original equations to find the value of aa. Let's use the first equation:\newline26=ab1.526 = a \cdot b^{-1.5}Substitute the value of bb into the equation:\newline26=a(0.76923)1.526 = a \cdot (0.76923)^{-1.5}Solve for aa:\newlinea26/(0.76923)1.5a \approx 26 / (0.76923)^{-1.5}\newlinea26/2.21868a \approx 26 / 2.21868\newlinea11.717a \approx 11.717Now we have both aa and bb, and we can write the exponential function as:\newlinebb22Finally, we can find f(10)f(10) using the exponential function:\newlinebb44
  12. Find f(10)f(10): Now that we have the value of bb, we can use one of the original equations to find the value of aa. Let's use the first equation:\newline26=ab1.526 = a \cdot b^{-1.5}Substitute the value of bb into the equation:\newline26=a(0.76923)1.526 = a \cdot (0.76923)^{-1.5}Solve for aa:\newlinea26/(0.76923)1.5a \approx 26 / (0.76923)^{-1.5}\newlinea26/2.21868a \approx 26 / 2.21868\newlinea11.717a \approx 11.717Now we have both aa and bb, and we can write the exponential function as:\newlinebb22Finally, we can find f(10)f(10) using the exponential function:\newlinebb44Calculating f(10)f(10):\newlinebb66\newlinebb77

More problems from Use normal distributions to approximate binomial distributions