Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(x)=4^(1+x)+7, what is the value of 
f(3), to the nearest thousandth (if necessary)?
Answer:

If f(x)=41+x+7 f(x)=4^{1+x}+7 , what is the value of f(3) f(3) , to the nearest thousandth (if necessary)?\newlineAnswer:

Full solution

Q. If f(x)=41+x+7 f(x)=4^{1+x}+7 , what is the value of f(3) f(3) , to the nearest thousandth (if necessary)?\newlineAnswer:
  1. Substitute xx with 33: To find the value of f(3)f(3), we need to substitute xx with 33 in the function f(x)=4(1+x)+7f(x) = 4^{(1+x)} + 7.\newlineCalculation: f(3)=4(1+3)+7=44+7=256+7=263f(3) = 4^{(1+3)} + 7 = 4^4 + 7 = 256 + 7 = 263.

More problems from Solve exponential equations using common logarithms