Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(x)=3x-1 and 
g(x)=x^(2)+1, what is the value of 
g(f(3)) ?
Choose 1 answer:
(A) 8
(B) 10
(C) 29
(D) 65

If f(x)=3x1 f(x)=3x-1 and g(x)=x2+1 g(x)=x^{2}+1 , what is the value of g(f(3)) g(f(3)) ?\newlineChoose 11 answer:\newline(A) 8 8 \newline(B) 10 10 \newline(C) 29 29 \newline(D) 65 65

Full solution

Q. If f(x)=3x1 f(x)=3x-1 and g(x)=x2+1 g(x)=x^{2}+1 , what is the value of g(f(3)) g(f(3)) ?\newlineChoose 11 answer:\newline(A) 8 8 \newline(B) 10 10 \newline(C) 29 29 \newline(D) 65 65
  1. Find f(3)f(3): First, we need to find the value of f(3)f(3) by substituting xx with 33 in the function f(x)f(x).
    f(x)=3x1f(x) = 3x - 1
    f(3)=3(3)1f(3) = 3(3) - 1
    f(3)=91f(3) = 9 - 1
    f(3)=8f(3) = 8
  2. Calculate g(f(3))g(f(3)): Now that we have f(3)=8f(3) = 8, we need to find the value of g(f(3))g(f(3)) by substituting f(3)f(3) into the function g(x)g(x).
    g(x)=x2+1g(x) = x^2 + 1
    g(f(3))=g(8)=82+1g(f(3)) = g(8) = 8^2 + 1
    g(f(3))=64+1g(f(3)) = 64 + 1
    g(f(3))=65g(f(3)) = 65

More problems from Evaluate expression when a complex numbers and a variable term is given