Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(x)=3^(3x)+14, what is the value of 
f(-1), to the nearest thousandth (if necessary)?
Answer:

If f(x)=33x+14 f(x)=3^{3 x}+14 , what is the value of f(1) f(-1) , to the nearest thousandth (if necessary)?\newlineAnswer:

Full solution

Q. If f(x)=33x+14 f(x)=3^{3 x}+14 , what is the value of f(1) f(-1) , to the nearest thousandth (if necessary)?\newlineAnswer:
  1. Substitute xx with 1-1: To find the value of f(1)f(-1), we need to substitute xx with 1-1 in the function f(x)=33x+14f(x) = 3^{3x} + 14.\newlinef(1)=33(1)+14f(-1) = 3^{3*(-1)} + 14
  2. Calculate the exponent: Now we calculate the exponent part: 3(1)=33*(-1) = -3. So, f(1)=33+14f(-1) = 3^{-3} + 14
  3. Calculate 333^{-3}: Next, we calculate 333^{-3}. Since a negative exponent means the reciprocal of the base raised to the positive exponent, we have 33=1333^{-3} = \frac{1}{3^3}.\newlinef(1)=133+14f(-1) = \frac{1}{3^3} + 14
  4. Calculate 333^3: Now we calculate 333^3 which is 333=273*3*3 = 27.\newlineSo, f(1)=127+14f(-1) = \frac{1}{27} + 14
  5. Perform the division: We then perform the division: 127\frac{1}{27} is approximately 0.0370.037 (rounded to three decimal places).\newlinef(1)=0.037+14f(-1) = 0.037 + 14
  6. Add to get f(1)f(-1): Finally, we add 0.0370.037 to 1414 to get the value of f(1)f(-1).\newlinef(1)=14.037f(-1) = 14.037

More problems from Solve exponential equations using logarithms