Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

if f(x)=2tan(x)f(x) = 2^{\tan(x)} then f(π4)f'(\frac{\pi}{4})

Full solution

Q. if f(x)=2tan(x)f(x) = 2^{\tan(x)} then f(π4)f'(\frac{\pi}{4})
  1. Identify Function and Point: Step 11: Identify the function and the point of interest.\newlineWe have the function f(x)=2tan(x)f(x) = 2^{\tan(x)} and we need to find its derivative at x=π4x = \frac{\pi}{4}.
  2. Apply Chain Rule: Step 22: Use the chain rule to differentiate f(x)f(x).f(x)=2tan(x)ln(2)sec2(x)f'(x) = 2^{\tan(x)} \cdot \ln(2) \cdot \sec^2(x)
  3. Substitute x Value: Step 33: Substitute x=π4x = \frac{\pi}{4} into the derivative.f(π4)=2tan(π4)ln(2)sec2(π4)f'(\frac{\pi}{4}) = 2^{\tan(\frac{\pi}{4})} \cdot \ln(2) \cdot \sec^2(\frac{\pi}{4})
  4. Calculate Trigonometric Functions: Step 44: Calculate tan(π/4)\tan(\pi/4) and sec2(π/4)\sec^2(\pi/4).\newlinetan(π/4)=1\tan(\pi/4) = 1, sec(π/4)=2\sec(\pi/4) = \sqrt{2}, so sec2(π/4)=2\sec^2(\pi/4) = 2.
  5. Final Derivative Calculation: Step 55: Substitute these values into the derivative.\newlinef(π4)=21×ln(2)×2f'(\frac{\pi}{4}) = 2^1 \times \ln(2) \times 2\newline=2×ln(2)×2= 2 \times \ln(2) \times 2\newline=4ln(2)= 4\ln(2)

More problems from Evaluate expression when two complex numbers are given