Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(x)=2^(2x)+10, what is the value of 
f(-3), to the nearest ten-thousandth (if necessary)?
Answer:

If f(x)=22x+10 f(x)=2^{2 x}+10 , what is the value of f(3) f(-3) , to the nearest ten-thousandth (if necessary)?\newlineAnswer:

Full solution

Q. If f(x)=22x+10 f(x)=2^{2 x}+10 , what is the value of f(3) f(-3) , to the nearest ten-thousandth (if necessary)?\newlineAnswer:
  1. Substitute xx with 3-3: To find the value of f(3)f(-3), we need to substitute xx with 3-3 in the function f(x)=2(2x)+10f(x) = 2^{(2x)} + 10.\newlinef(3)=2(2(3))+10f(-3) = 2^{(2*(-3))} + 10
  2. Calculate exponent part: Now we calculate the exponent part: 2(3)=62\cdot(-3) = -6. So we have:\newlinef(3)=26+10f(-3) = 2^{-6} + 10
  3. Calculate 262^{-6}: Next, we calculate 262^{-6}. Since 262^{-6} is the same as 1/(26)1/(2^6), we find:\newline26=1/(26)=1/642^{-6} = 1/(2^6) = 1/64
  4. Add 1010: Now we add 1010 to the result of 262^{-6}:\newlinef(3)=164+10f(-3) = \frac{1}{64} + 10
  5. Express 1010 as fraction: To add 164\frac{1}{64} to 1010, we need to express 1010 as a fraction with the same denominator as 164\frac{1}{64}:10=10×(6464)=6406410 = 10 \times \left(\frac{64}{64}\right) = \frac{640}{64}
  6. Add two fractions: Now we add the two fractions: f(3)=164+64064=(1+640)64f(-3) = \frac{1}{64} + \frac{640}{64} = \frac{(1 + 640)}{64}
  7. Perform addition in numerator: We perform the addition in the numerator: f(3)=(1+640)/64=641/64f(-3) = (1 + 640)/64 = 641/64
  8. Divide 641641 by 6464: Finally, we divide 641641 by 6464 to get the decimal value:\newlinef(3)=6416410.015625f(-3) = \frac{641}{64} \approx 10.015625

More problems from Solve exponential equations using logarithms