Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=4 and 
f(n)=f(n-1)^(2)-n then find the value of 
f(4).
Answer:

If f(1)=4 f(1)=4 and f(n)=f(n1)2n f(n)=f(n-1)^{2}-n then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=4 f(1)=4 and f(n)=f(n1)2n f(n)=f(n-1)^{2}-n then find the value of f(4) f(4) .\newlineAnswer:
  1. Given f(1)=4f(1) = 4: We are given f(1)=4f(1) = 4 and the recursive formula f(n)=f(n1)2nf(n) = f(n-1)^{2} - n. To find f(4)f(4), we need to find the values of f(2)f(2), f(3)f(3), and then f(4)f(4) using the recursive formula.
  2. Find f(2)f(2): First, let's find f(2)f(2) using the formula:\newlinef(2)=f(21)22f(2) = f(2-1)^{2} - 2\newlinef(2)=f(1)22f(2) = f(1)^{2} - 2\newlinef(2)=422f(2) = 4^{2} - 2\newlinef(2)=162f(2) = 16 - 2\newlinef(2)=14f(2) = 14
  3. Find f(3)f(3): Next, we find f(3)f(3) using the value of f(2)f(2):
    f(3)=f(31)23f(3) = f(3-1)^{2} - 3
    f(3)=f(2)23f(3) = f(2)^{2} - 3
    f(3)=1423f(3) = 14^{2} - 3
    f(3)=1963f(3) = 196 - 3
    f(3)=193f(3) = 193
  4. Find f(4)f(4): Finally, we find f(4)f(4) using the value of f(3)f(3):
    f(4)=f(41)24f(4) = f(4-1)^{2} - 4
    f(4)=f(3)24f(4) = f(3)^{2} - 4
    f(4)=19324f(4) = 193^{2} - 4
    f(4)=372494f(4) = 37249 - 4
    f(4)=37245f(4) = 37245

More problems from Evaluate expression when two complex numbers are given