Q. If f(1)=4 and f(n)=f(n−1)2−n then find the value of f(4).Answer:
Given f(1)=4: We are given f(1)=4 and the recursive formula f(n)=f(n−1)2−n. To find f(4), we need to find the values of f(2), f(3), and then f(4) using the recursive formula.
Find f(2): First, let's find f(2) using the formula:f(2)=f(2−1)2−2f(2)=f(1)2−2f(2)=42−2f(2)=16−2f(2)=14
Find f(3): Next, we find f(3) using the value of f(2): f(3)=f(3−1)2−3 f(3)=f(2)2−3 f(3)=142−3 f(3)=196−3 f(3)=193
Find f(4): Finally, we find f(4) using the value of f(3): f(4)=f(4−1)2−4 f(4)=f(3)2−4 f(4)=1932−4 f(4)=37249−4 f(4)=37245
More problems from Evaluate expression when two complex numbers are given