Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=4 and 
f(n)=f(n-1)^(2)-5 then find the value of 
f(3).
Answer:

If f(1)=4 f(1)=4 and f(n)=f(n1)25 f(n)=f(n-1)^{2}-5 then find the value of f(3) f(3) .\newlineAnswer:

Full solution

Q. If f(1)=4 f(1)=4 and f(n)=f(n1)25 f(n)=f(n-1)^{2}-5 then find the value of f(3) f(3) .\newlineAnswer:
  1. Given Initial Condition: We are given the initial condition f(1)=4f(1) = 4 and the recursive formula f(n)=f(n1)25f(n) = f(n-1)^{2} - 5. To find f(3)f(3), we first need to find f(2)f(2).
  2. Find f(2)f(2): Using the recursive formula, we substitute n=2n = 2 to find f(2)f(2):
    f(2)=f(21)25f(2) = f(2-1)^{2} - 5
    f(2)=f(1)25f(2) = f(1)^{2} - 5
    f(2)=425f(2) = 4^{2} - 5
    f(2)=165f(2) = 16 - 5
    f(2)=11f(2) = 11
  3. Find f(3)f(3): Now that we have f(2)f(2), we can use it to find f(3)f(3) using the same recursive formula:\newlinef(3)=f(31)25f(3) = f(3-1)^{2} - 5\newlinef(3)=f(2)25f(3) = f(2)^{2} - 5\newlinef(3)=1125f(3) = 11^{2} - 5\newlinef(3)=1215f(3) = 121 - 5\newlinef(3)=116f(3) = 116

More problems from Evaluate expression when two complex numbers are given