Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=4 and 
f(n)=f(n-1)^(2)-4 then find the value of 
f(4).
Answer:

If f(1)=4 f(1)=4 and f(n)=f(n1)24 f(n)=f(n-1)^{2}-4 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=4 f(1)=4 and f(n)=f(n1)24 f(n)=f(n-1)^{2}-4 then find the value of f(4) f(4) .\newlineAnswer:
  1. Given initial condition: We are given the initial condition f(1)=4f(1) = 4 and the recursive formula f(n)=f(n1)24f(n) = f(n-1)^{2} - 4. To find f(4)f(4), we need to find the values of f(2)f(2), f(3)f(3), and then f(4)f(4) using the recursive formula.
  2. Find f(2)f(2): First, let's find f(2)f(2) using the given formula and the initial condition f(1)=4f(1) = 4.
    f(2)=f(1)24f(2) = f(1)^{2} - 4
    f(2)=424f(2) = 4^2 - 4
    f(2)=164f(2) = 16 - 4
    f(2)=12f(2) = 12
  3. Find f(3)f(3): Next, we'll find f(3)f(3) using the value of f(2)f(2) we just calculated.\newlinef(3)=f(2)24f(3) = f(2)^{2} - 4\newlinef(3)=1224f(3) = 12^{2} - 4\newlinef(3)=1444f(3) = 144 - 4\newlinef(3)=140f(3) = 140
  4. Find f(4)f(4): Finally, we can find f(4)f(4) using the value of f(3)f(3).
    f(4)=f(3)24f(4) = f(3)^{2} - 4
    f(4)=14024f(4) = 140^{2} - 4
    f(4)=196004f(4) = 19600 - 4
    f(4)=19596f(4) = 19596

More problems from Evaluate expression when two complex numbers are given