Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=4 and 
f(n)=f(n-1)^(2)-1 then find the value of 
f(4).
Answer:

If f(1)=4 f(1)=4 and f(n)=f(n1)21 f(n)=f(n-1)^{2}-1 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=4 f(1)=4 and f(n)=f(n1)21 f(n)=f(n-1)^{2}-1 then find the value of f(4) f(4) .\newlineAnswer:
  1. Given Initial Condition: We are given the initial condition f(1)=4f(1) = 4 and the recursive formula f(n)=f(n1)21f(n) = f(n-1)^{2} - 1. To find f(4)f(4), we need to find the values of f(2)f(2), f(3)f(3), and then f(4)f(4) using the recursive formula.
  2. Find f(2)f(2): First, let's find f(2)f(2) using the given formula and the initial condition f(1)=4f(1) = 4.
    f(2)=f(1)21f(2) = f(1)^{2} - 1
    f(2)=421f(2) = 4^2 - 1
    f(2)=161f(2) = 16 - 1
    f(2)=15f(2) = 15
  3. Find f(3)f(3): Next, we find f(3)f(3) using the value of f(2)f(2) we just calculated.\newlinef(3)=f(2)21f(3) = f(2)^{2} - 1\newlinef(3)=1521f(3) = 15^{2} - 1\newlinef(3)=2251f(3) = 225 - 1\newlinef(3)=224f(3) = 224
  4. Find f(4)f(4): Finally, we find f(4)f(4) using the value of f(3)f(3).
    f(4)=f(3)21f(4) = f(3)^{2} - 1
    f(4)=22421f(4) = 224^{2} - 1
    f(4)=501761f(4) = 50176 - 1
    f(4)=50175f(4) = 50175

More problems from Evaluate expression when two complex numbers are given