Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=4 and 
f(n+1)=f(n)^(2)+4 then find the value of 
f(3).
Answer:

If f(1)=4 f(1)=4 and f(n+1)=f(n)2+4 f(n+1)=f(n)^{2}+4 then find the value of f(3) f(3) .\newlineAnswer:

Full solution

Q. If f(1)=4 f(1)=4 and f(n+1)=f(n)2+4 f(n+1)=f(n)^{2}+4 then find the value of f(3) f(3) .\newlineAnswer:
  1. Given initial condition and formula: We are given the initial condition and the recursive formula:\newlinef(1)=4f(1) = 4\newlinef(n+1)=f(n)2+4f(n+1) = f(n)^{2} + 4\newlineWe need to find f(3)f(3). To do this, we will first find f(2)f(2) using the given recursive formula.\newlineSubstitute n=1n=1 into the recursive formula to find f(2)f(2).\newlinef(2)=f(1)2+4f(2) = f(1)^{2} + 4
  2. Calculate f(2)f(2): Now we calculate f(2)f(2) using the value of f(1)f(1).
    f(2)=42+4f(2) = 4^{2} + 4
    f(2)=16+4f(2) = 16 + 4
    f(2)=20f(2) = 20
    We have found f(2)f(2) without any mathematical errors.
  3. Use f(2)f(2) to find f(3)f(3): Next, we use the value of f(2)f(2) to find f(3)f(3) using the recursive formula again.\newlineSubstitute n=2n=2 into the recursive formula to find f(3)f(3).\newlinef(3)=f(2)2+4f(3) = f(2)^{2} + 4
  4. Calculate f(3)f(3): Now we calculate f(3)f(3) using the value of f(2)f(2).
    f(3)=202+4f(3) = 20^{2} + 4
    f(3)=400+4f(3) = 400 + 4
    f(3)=404f(3) = 404
    We have found f(3)f(3) without any mathematical errors.

More problems from Evaluate expression when two complex numbers are given