Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=4 and 
f(n+1)=f(n)^(2)-4 then find the value of 
f(3).
Answer:

If f(1)=4 f(1)=4 and f(n+1)=f(n)24 f(n+1)=f(n)^{2}-4 then find the value of f(3) f(3) .\newlineAnswer:

Full solution

Q. If f(1)=4 f(1)=4 and f(n+1)=f(n)24 f(n+1)=f(n)^{2}-4 then find the value of f(3) f(3) .\newlineAnswer:
  1. Given initial condition and formula: We are given the initial condition and the recursive formula:\newlinef(1)=4f(1) = 4\newlinef(n+1)=f(n)24f(n+1) = f(n)^{2} - 4\newlineWe need to find f(3)f(3). To do this, we will first find f(2)f(2) using the given recursive formula and the initial condition.\newlineSubstitute n=1n = 1 into the recursive formula to find f(2)f(2).\newlinef(2)=f(1)24f(2) = f(1)^{2} - 4\newlinef(2)=424f(2) = 4^2 - 4\newlinef(2)=164f(2) = 16 - 4\newlinef(2)=12f(2) = 12
  2. Find f(2)f(2): Now that we have f(2)f(2), we can use it to find f(3)f(3) using the same recursive formula.\newlineSubstitute n=2n = 2 into the recursive formula to find f(3)f(3).\newlinef(3)=f(2)24f(3) = f(2)^{2} - 4\newlinef(3)=1224f(3) = 12^{2} - 4\newlinef(3)=1444f(3) = 144 - 4\newlinef(3)=140f(3) = 140

More problems from Evaluate expression when two complex numbers are given