Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=4 and 
f(n+1)=f(n)^(2)+3 then find the value of 
f(4).
Answer:

If f(1)=4 f(1)=4 and f(n+1)=f(n)2+3 f(n+1)=f(n)^{2}+3 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=4 f(1)=4 and f(n+1)=f(n)2+3 f(n+1)=f(n)^{2}+3 then find the value of f(4) f(4) .\newlineAnswer:
  1. Given initial condition and formula: We are given the initial condition and the recursive formula for the function ff:f(1)=4f(1) = 4f(n+1)=f(n)2+3f(n+1) = f(n)^{2} + 3We need to find the value of f(4)f(4). We will start by finding f(2)f(2) using the given recursive formula. Substitute n=1n=1 into the recursive formula to find f(2)f(2).f(2)=f(1)2+3f(2) = f(1)^{2} + 3f(2)=42+3f(2) = 4^2 + 3f(2)=16+3f(2) = 16 + 3f(2)=19f(2) = 19
  2. Find f(2)f(2): Now that we have f(2)f(2), we will use it to find f(3)f(3). Substitute n=2n=2 into the recursive formula to find f(3)f(3). f(3)=f(2)2+3f(3) = f(2)^{2} + 3 f(3)=192+3f(3) = 19^{2} + 3 f(3)=361+3f(3) = 361 + 3 f(3)=364f(3) = 364
  3. Find f(3)f(3): Finally, we will use f(3)f(3) to find f(4)f(4). Substitute n=3n=3 into the recursive formula to find f(4)f(4). f(4)=f(3)2+3f(4) = f(3)^{2} + 3 f(4)=3642+3f(4) = 364^{2} + 3 f(4)=132496+3f(4) = 132496 + 3 f(4)=132499f(4) = 132499

More problems from Evaluate expression when two complex numbers are given