Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=3 and 
f(n)=f(n-1)^(2)+5 then find the value of 
f(4).
Answer:

If f(1)=3 f(1)=3 and f(n)=f(n1)2+5 f(n)=f(n-1)^{2}+5 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=3 f(1)=3 and f(n)=f(n1)2+5 f(n)=f(n-1)^{2}+5 then find the value of f(4) f(4) .\newlineAnswer:
  1. Given f(1)f(1): We are given f(1)=3f(1) = 3. To find f(4)f(4), we need to find the values of f(2)f(2), f(3)f(3), and then f(4)f(4) using the recursive formula f(n)=f(n1)2+5f(n) = f(n-1)^{2} + 5. First, let's find f(2)f(2). f(2)=f(1)2+5=32+5=9+5=14f(2) = f(1)^{2} + 5 = 3^2 + 5 = 9 + 5 = 14
  2. Find f(2)f(2): Now, let's find f(3)f(3) using the value of f(2)f(2).f(3)=f(2)2+5=142+5=196+5=201f(3) = f(2)^{2} + 5 = 14^{2} + 5 = 196 + 5 = 201
  3. Find f(3)f(3): Finally, we find f(4)f(4) using the value of f(3)f(3).\newlinef(4)=f(3)2+5f(4) = f(3)^{2} + 5\newline=2012+5= 201^{2} + 5\newline=40401+5= 40401 + 5\newline=40406= 40406

More problems from Evaluate expression when two complex numbers are given