Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=3 and 
f(n)=f(n-1)^(2)-5 then find the value of 
f(3).
Answer:

If f(1)=3 f(1)=3 and f(n)=f(n1)25 f(n)=f(n-1)^{2}-5 then find the value of f(3) f(3) .\newlineAnswer:

Full solution

Q. If f(1)=3 f(1)=3 and f(n)=f(n1)25 f(n)=f(n-1)^{2}-5 then find the value of f(3) f(3) .\newlineAnswer:
  1. Find f(2)f(2): We are given the initial condition f(1)=3f(1) = 3 and the recursive formula f(n)=f(n1)25f(n) = f(n-1)^{2} - 5. To find f(3)f(3), we first need to find f(2)f(2). Using the recursive formula, we substitute n=2n = 2 to find f(2)f(2): f(2)=f(21)25f(2) = f(2-1)^{2} - 5 f(2)=f(1)25f(2) = f(1)^{2} - 5 f(2)=325f(2) = 3^{2} - 5 f(1)=3f(1) = 300 f(1)=3f(1) = 311
  2. Find f(3)f(3): Now that we have f(2)f(2), we can use it to find f(3)f(3). Using the recursive formula again, we substitute n=3n = 3 to find f(3)f(3): f(3)=f(31)25f(3) = f(3-1)^{2} - 5 f(3)=f(2)25f(3) = f(2)^{2} - 5 f(3)=425f(3) = 4^{2} - 5 f(3)=165f(3) = 16 - 5 f(3)=11f(3) = 11

More problems from Evaluate expression when two complex numbers are given