Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=3 and 
f(n)=f(n-1)^(2)+4 then find the value of 
f(4).
Answer:

If f(1)=3 f(1)=3 and f(n)=f(n1)2+4 f(n)=f(n-1)^{2}+4 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=3 f(1)=3 and f(n)=f(n1)2+4 f(n)=f(n-1)^{2}+4 then find the value of f(4) f(4) .\newlineAnswer:
  1. Given initial condition: We are given the initial condition f(1)=3f(1) = 3 and the recursive formula f(n)=f(n1)2+4f(n) = f(n-1)^{2} + 4. To find f(4)f(4), we first need to find f(2)f(2), f(3)f(3), and then f(4)f(4) using the recursive formula.
  2. Find f(2)f(2): Using the recursive formula, let's find f(2)f(2):
    f(2)=f(1)2+4f(2) = f(1)^{2} + 4
    Substitute the value of f(1)f(1) into the equation:
    f(2)=32+4f(2) = 3^{2} + 4
    f(2)=9+4f(2) = 9 + 4
    f(2)=13f(2) = 13
  3. Find f(3)f(3): Next, we find f(3)f(3) using the value of f(2)f(2):
    f(3)=f(2)2+4f(3) = f(2)^{2} + 4
    Substitute the value of f(2)f(2) into the equation:
    f(3)=132+4f(3) = 13^{2} + 4
    f(3)=169+4f(3) = 169 + 4
    f(3)=173f(3) = 173
  4. Find f(4)f(4): Finally, we find f(4)f(4) using the value of f(3)f(3):
    f(4)=f(3)2+4f(4) = f(3)^{2} + 4
    Substitute the value of f(3)f(3) into the equation:
    f(4)=1732+4f(4) = 173^{2} + 4
    f(4)=29929+4f(4) = 29929 + 4
    f(4)=29933f(4) = 29933

More problems from Evaluate expression when two complex numbers are given