Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=3 and 
f(n)=f(n-1)^(2)-1 then find the value of 
f(4).
Answer:

If f(1)=3 f(1)=3 and f(n)=f(n1)21 f(n)=f(n-1)^{2}-1 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=3 f(1)=3 and f(n)=f(n1)21 f(n)=f(n-1)^{2}-1 then find the value of f(4) f(4) .\newlineAnswer:
  1. Given Initial Condition: We are given the initial condition f(1)=3f(1) = 3 and the recursive formula f(n)=f(n1)21f(n) = f(n-1)^{2} - 1. To find f(4)f(4), we need to find the values of f(2)f(2), f(3)f(3), and then f(4)f(4) using the recursive formula.
  2. Find f(2)f(2): First, let's find f(2)f(2) using the recursive formula and the initial condition.f(2)=f(1)21f(2) = f(1)^{2} - 1=321= 3^{2} - 1=91= 9 - 1=8= 8So, f(2)=8f(2) = 8.
  3. Find f(3)f(3): Next, we find f(3)f(3) using the value of f(2)f(2).
    f(3)=f(2)21f(3) = f(2)^{2} - 1
    = 8218^{2} - 1
    = 64164 - 1
    = 6363
    So, f(3)=63f(3) = 63.
  4. Find f(4)f(4): Finally, we find f(4)f(4) using the value of f(3)f(3).
    f(4)=f(3)21f(4) = f(3)^{2} - 1
    = 632163^{2} - 1
    = 396913969 - 1
    = 39683968
    So, f(4)=3968f(4) = 3968.

More problems from Evaluate expression when two complex numbers are given