Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=2 and 
f(n)=f(n-1)^(2)+n then find the value of 
f(4).
Answer:

If f(1)=2 f(1)=2 and f(n)=f(n1)2+n f(n)=f(n-1)^{2}+n then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=2 f(1)=2 and f(n)=f(n1)2+n f(n)=f(n-1)^{2}+n then find the value of f(4) f(4) .\newlineAnswer:
  1. Find f(2)f(2): Given f(1)=2f(1) = 2, we need to find f(2)f(2) using the recursive formula f(n)=f(n1)2+nf(n) = f(n-1)^{2} + n.
    f(2)=f(21)2+2f(2) = f(2-1)^{2} + 2
    f(2)=f(1)2+2f(2) = f(1)^{2} + 2
    f(2)=22+2f(2) = 2^{2} + 2
    f(2)=4+2f(2) = 4 + 2
    f(2)=6f(2) = 6
  2. Find f(3)f(3): Now we have f(2)=6f(2) = 6, we will find f(3)f(3) using the recursive formula.\newlinef(3)=f(31)2+3f(3) = f(3-1)^{2} + 3\newlinef(3)=f(2)2+3f(3) = f(2)^{2} + 3\newlinef(3)=62+3f(3) = 6^{2} + 3\newlinef(3)=36+3f(3) = 36 + 3\newlinef(3)=39f(3) = 39
  3. Find f(4)f(4): Having found f(3)=39f(3) = 39, we will now find f(4)f(4) using the recursive formula.\newlinef(4)=f(41)2+4f(4) = f(4-1)^{2} + 4\newlinef(4)=f(3)2+4f(4) = f(3)^{2} + 4\newlinef(4)=392+4f(4) = 39^{2} + 4\newlinef(4)=1521+4f(4) = 1521 + 4\newlinef(4)=1525f(4) = 1525

More problems from Evaluate expression when a complex numbers and a variable term is given