Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=2 and 
f(n)=f(n-1)^(2)-5 then find the value of 
f(4).
Answer:

If f(1)=2 f(1)=2 and f(n)=f(n1)25 f(n)=f(n-1)^{2}-5 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=2 f(1)=2 and f(n)=f(n1)25 f(n)=f(n-1)^{2}-5 then find the value of f(4) f(4) .\newlineAnswer:
  1. Given f(1)f(1): We are given f(1)=2f(1) = 2 and the recursive formula f(n)=f(n1)25f(n) = f(n-1)^{2} - 5. To find f(4)f(4), we need to find the values of f(2)f(2), f(3)f(3), and then f(4)f(4) using the recursive formula.
  2. Find f(2)f(2): First, let's find f(2)f(2) using the given formula:\newlinef(2)=f(1)25f(2) = f(1)^{2} - 5\newlineSubstitute the value of f(1)f(1) into the formula:\newlinef(2)=(2)25f(2) = (2)^{2} - 5\newlinef(2)=45f(2) = 4 - 5\newlinef(2)=1f(2) = -1
  3. Find f(3)f(3): Next, we find f(3)f(3) using the value of f(2)f(2):
    f(3)=f(2)25f(3) = f(2)^{2} - 5
    Substitute the value of f(2)f(2) into the formula:
    f(3)=(1)25f(3) = (-1)^{2} - 5
    f(3)=15f(3) = 1 - 5
    f(3)=4f(3) = -4
  4. Find f(4)f(4): Finally, we find f(4)f(4) using the value of f(3)f(3):
    f(4)=f(3)25f(4) = f(3)^{2} - 5
    Substitute the value of f(3)f(3) into the formula:
    f(4)=(4)25f(4) = (-4)^{2} - 5
    f(4)=165f(4) = 16 - 5
    f(4)=11f(4) = 11

More problems from Evaluate expression when two complex numbers are given