Q. If f(1)=2 and f(n)=f(n−1)2−5 then find the value of f(4).Answer:
Given f(1): We are given f(1)=2 and the recursive formula f(n)=f(n−1)2−5. To find f(4), we need to find the values of f(2), f(3), and then f(4) using the recursive formula.
Find f(2): First, let's find f(2) using the given formula:f(2)=f(1)2−5Substitute the value of f(1) into the formula:f(2)=(2)2−5f(2)=4−5f(2)=−1
Find f(3): Next, we find f(3) using the value of f(2): f(3)=f(2)2−5 Substitute the value of f(2) into the formula: f(3)=(−1)2−5 f(3)=1−5 f(3)=−4
Find f(4): Finally, we find f(4) using the value of f(3): f(4)=f(3)2−5 Substitute the value of f(3) into the formula: f(4)=(−4)2−5 f(4)=16−5 f(4)=11
More problems from Evaluate expression when two complex numbers are given