Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=2 and 
f(n)=f(n-1)^(2)+1 then find the value of 
f(4).
Answer:

If f(1)=2 f(1)=2 and f(n)=f(n1)2+1 f(n)=f(n-1)^{2}+1 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=2 f(1)=2 and f(n)=f(n1)2+1 f(n)=f(n-1)^{2}+1 then find the value of f(4) f(4) .\newlineAnswer:
  1. Calculate f(2)f(2): Given f(1)=2f(1) = 2, we need to find f(2)f(2) using the recursive formula f(n)=f(n1)2+1f(n) = f(n-1)^{2} + 1.f(2)=f(1)2+1=22+1=4+1=5f(2) = f(1)^{2} + 1 = 2^2 + 1 = 4 + 1 = 5.
  2. Calculate f(3)f(3): Now, we find f(3)f(3) using the value of f(2)f(2) we just calculated.f(3)=f(2)2+1=52+1=25+1=26f(3) = f(2)^{2} + 1 = 5^2 + 1 = 25 + 1 = 26.
  3. Calculate f(4)f(4): Finally, we find f(4)f(4) using the value of f(3)f(3).f(4)=f(3)2+1=262+1=676+1=677f(4) = f(3)^{2} + 1 = 26^{2} + 1 = 676 + 1 = 677.

More problems from Evaluate expression when a complex numbers and a variable term is given