Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=2 and 
f(n+1)=f(n)^(2)+5 then find the value of 
f(4).
Answer:

If f(1)=2 f(1)=2 and f(n+1)=f(n)2+5 f(n+1)=f(n)^{2}+5 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=2 f(1)=2 and f(n+1)=f(n)2+5 f(n+1)=f(n)^{2}+5 then find the value of f(4) f(4) .\newlineAnswer:
  1. Given initial condition: We are given the initial condition and the recursive formula for the function ff:f(1)=2f(1) = 2f(n+1)=f(n)2+5f(n+1) = f(n)^{2} + 5We need to find the value of f(4)f(4). We will start by finding f(2)f(2) using the given recursive formula.\newlineSubstitute n=1n=1 into the recursive formula to find f(2)f(2).f(2)=f(1)2+5f(2) = f(1)^{2} + 5f(2)=22+5f(2) = 2^{2} + 5f(2)=4+5f(2) = 4 + 5f(2)=9f(2) = 9
  2. Find f(2)f(2): Now that we have f(2)f(2), we will use it to find f(3)f(3).\newlineSubstitute n=2n=2 into the recursive formula to find f(3)f(3).\newlinef(3)=f(2)2+5f(3) = f(2)^{2} + 5\newlinef(3)=92+5f(3) = 9^{2} + 5\newlinef(3)=81+5f(3) = 81 + 5\newlinef(3)=86f(3) = 86
  3. Find f(3)f(3): With f(3)f(3) found, we can now find f(4)f(4). Substitute n=3n=3 into the recursive formula to find f(4)f(4). f(4)=f(3)2+5f(4) = f(3)^{2} + 5 f(4)=862+5f(4) = 86^{2} + 5 f(4)=7396+5f(4) = 7396 + 5 f(4)=7401f(4) = 7401

More problems from Evaluate expression when two complex numbers are given