Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=2 and 
f(n+1)=f(n)^(2)+4 then find the value of 
f(4).
Answer:

If f(1)=2 f(1)=2 and f(n+1)=f(n)2+4 f(n+1)=f(n)^{2}+4 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=2 f(1)=2 and f(n+1)=f(n)2+4 f(n+1)=f(n)^{2}+4 then find the value of f(4) f(4) .\newlineAnswer:
  1. Given Initial Condition and Formula: We are given the initial condition and the recursive formula:\newlinef(1)=2f(1) = 2\newlinef(n+1)=f(n)2+4f(n+1) = f(n)^{2} + 4\newlineWe need to find f(4)f(4). Let's start by finding f(2)f(2) using the recursive formula.\newlineSubstitute n=1n=1 into the recursive formula to find f(2)f(2).\newlinef(2)=f(1)2+4f(2) = f(1)^{2} + 4\newlinef(2)=22+4f(2) = 2^{2} + 4\newlinef(2)=4+4f(2) = 4 + 4\newlinef(2)=8f(2) = 8
  2. Find f(2)f(2): Now that we have f(2)f(2), we can find f(3)f(3) using the recursive formula.\newlineSubstitute n=2n=2 into the recursive formula to find f(3)f(3).\newlinef(3)=f(2)2+4f(3) = f(2)^{2} + 4\newlinef(3)=82+4f(3) = 8^{2} + 4\newlinef(3)=64+4f(3) = 64 + 4\newlinef(3)=68f(3) = 68
  3. Find f(3)f(3): Finally, we can find f(4)f(4) using the recursive formula.\newlineSubstitute n=3n=3 into the recursive formula to find f(4)f(4).\newlinef(4)=f(3)2+4f(4) = f(3)^{2} + 4\newlinef(4)=682+4f(4) = 68^{2} + 4\newlinef(4)=4624+4f(4) = 4624 + 4\newlinef(4)=4628f(4) = 4628

More problems from Evaluate expression when two complex numbers are given