Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=2 and 
f(n+1)=f(n)^(2)-1 then find the value of 
f(4).
Answer:

If f(1)=2 f(1)=2 and f(n+1)=f(n)21 f(n+1)=f(n)^{2}-1 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=2 f(1)=2 and f(n+1)=f(n)21 f(n+1)=f(n)^{2}-1 then find the value of f(4) f(4) .\newlineAnswer:
  1. Given conditions: We are given the initial condition and the recursive formula:\newlinef(1)=2f(1) = 2\newlinef(n+1)=f(n)21f(n+1) = f(n)^{2} - 1\newlineWe need to find f(4)f(4). To do this, we will calculate f(2)f(2), f(3)f(3), and then f(4)f(4) using the recursive formula.
  2. Find f(2)f(2): First, we find f(2)f(2) using the given formula with n=1n=1:
    f(2)=f(1)21f(2) = f(1)^{2} - 1
    Substitute f(1)=2f(1) = 2 into the formula:
    f(2)=(2)21f(2) = (2)^{2} - 1
    f(2)=41f(2) = 4 - 1
    f(2)=3f(2) = 3
  3. Find f(3)f(3): Next, we find f(3)f(3) using the given formula with n=2n=2:
    f(3)=f(2)21f(3) = f(2)^{2} - 1
    Substitute f(2)=3f(2) = 3 into the formula:
    f(3)=(3)21f(3) = (3)^{2} - 1
    f(3)=91f(3) = 9 - 1
    f(3)=8f(3) = 8
  4. Find f(4)f(4): Finally, we find f(4)f(4) using the given formula with n=3n=3:f(4)=f(3)21f(4) = f(3)^{2} - 1Substitute f(3)=8f(3) = 8 into the formula:f(4)=(8)21f(4) = (8)^{2} - 1f(4)=641f(4) = 64 - 1f(4)=63f(4) = 63

More problems from Evaluate expression when two complex numbers are given