Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=1 and 
f(n)=f(n-1)^(2)-n then find the value of 
f(4).
Answer:

If f(1)=1 f(1)=1 and f(n)=f(n1)2n f(n)=f(n-1)^{2}-n then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=1 f(1)=1 and f(n)=f(n1)2n f(n)=f(n-1)^{2}-n then find the value of f(4) f(4) .\newlineAnswer:
  1. Given function and initial condition: We are given the recursive function f(n)=f(n1)2nf(n) = f(n-1)^{2} - n, and the initial condition f(1)=1f(1) = 1. To find f(4)f(4), we need to find the values of f(2)f(2), f(3)f(3), and then f(4)f(4) using the recursive formula.
  2. Find f(2)f(2): First, let's find f(2)f(2) using the initial condition f(1)=1f(1) = 1.
    f(2)=f(21)22f(2) = f(2-1)^{2} - 2
    f(2)=f(1)22f(2) = f(1)^{2} - 2
    f(2)=122f(2) = 1^{2} - 2
    f(2)=12f(2) = 1 - 2
    f(2)=1f(2) = -1
  3. Find f(3)f(3): Next, we find f(3)f(3) using the value of f(2)f(2) we just found.\newlinef(3)=f(31)23f(3) = f(3-1)^{2} - 3\newlinef(3)=f(2)23f(3) = f(2)^{2} - 3\newlinef(3)=(1)23f(3) = (-1)^{2} - 3\newlinef(3)=13f(3) = 1 - 3\newlinef(3)=2f(3) = -2
  4. Find f(4)f(4): Finally, we find f(4)f(4) using the value of f(3)f(3).
    f(4)=f(41)24f(4) = f(4-1)^{2} - 4
    f(4)=f(3)24f(4) = f(3)^{2} - 4
    f(4)=(2)24f(4) = (-2)^{2} - 4
    f(4)=44f(4) = 4 - 4
    f(4)=0f(4) = 0

More problems from Evaluate expression when two complex numbers are given