Q. If f(1)=1 and f(n)=f(n−1)2−n then find the value of f(4).Answer:
Given function and initial condition: We are given the recursive function f(n)=f(n−1)2−n, and the initial condition f(1)=1. To find f(4), we need to find the values of f(2), f(3), and then f(4) using the recursive formula.
Find f(2): First, let's find f(2) using the initial condition f(1)=1. f(2)=f(2−1)2−2 f(2)=f(1)2−2 f(2)=12−2 f(2)=1−2 f(2)=−1
Find f(3): Next, we find f(3) using the value of f(2) we just found.f(3)=f(3−1)2−3f(3)=f(2)2−3f(3)=(−1)2−3f(3)=1−3f(3)=−2
Find f(4): Finally, we find f(4) using the value of f(3). f(4)=f(4−1)2−4 f(4)=f(3)2−4 f(4)=(−2)2−4 f(4)=4−4 f(4)=0
More problems from Evaluate expression when two complex numbers are given