Q. If f(1)=1 and f(n)=f(n−1)2+n then find the value of f(4).Answer:
Find f(2): Given f(1)=1, we need to find f(4) using the recursive formula f(n)=f(n−1)2+n. First, we find f(2). f(2)=f(2−1)2+2f(2)=f(1)2+2f(2)=12+2f(2)=1+2f(2)=3
Find f(3): Next, we find f(3) using the value of f(2). f(3)=f(3−1)2+3 f(3)=f(2)2+3 f(3)=32+3 f(3)=9+3 f(3)=12
Find f(4): Finally, we find f(4) using the value of f(3). f(4)=f(4−1)2+4 f(4)=f(3)2+4 f(4)=122+4 f(4)=144+4 f(4)=148
More problems from Evaluate expression when a complex numbers and a variable term is given