Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=1 and 
f(n)=f(n-1)^(2)-n then find the value of 
f(3).
Answer:

If f(1)=1 f(1)=1 and f(n)=f(n1)2n f(n)=f(n-1)^{2}-n then find the value of f(3) f(3) .\newlineAnswer:

Full solution

Q. If f(1)=1 f(1)=1 and f(n)=f(n1)2n f(n)=f(n-1)^{2}-n then find the value of f(3) f(3) .\newlineAnswer:
  1. Given Recursive Function: We are given the recursive function f(n)=f(n1)2nf(n) = f(n-1)^{2} - n and the initial condition f(1)=1f(1) = 1. To find f(3)f(3), we first need to find f(2)f(2).
  2. Find f(2)f(2): Using the recursive formula, we substitute n=2n = 2 to find f(2)f(2).
    f(2)=f(21)22f(2) = f(2-1)^{2} - 2
    f(2)=f(1)22f(2) = f(1)^{2} - 2
    Since we know f(1)=1f(1) = 1, we can substitute that in.
    f(2)=122f(2) = 1^{2} - 2
    f(2)=12f(2) = 1 - 2
    f(2)=1f(2) = -1
  3. Find f(3)f(3): Now that we have f(2)f(2), we can use it to find f(3)f(3).
    f(3)=f(31)23f(3) = f(3-1)^{2} - 3
    f(3)=f(2)23f(3) = f(2)^{2} - 3
    Substitute the value of f(2)f(2) we found in the previous step.
    f(3)=(1)23f(3) = (-1)^{2} - 3
    f(3)=13f(3) = 1 - 3
    f(3)=2f(3) = -2

More problems from Evaluate expression when two complex numbers are given