Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=1 and 
f(n)=f(n-1)^(2)-4 then find the value of 
f(3).
Answer:

If f(1)=1 f(1)=1 and f(n)=f(n1)24 f(n)=f(n-1)^{2}-4 then find the value of f(3) f(3) .\newlineAnswer:

Full solution

Q. If f(1)=1 f(1)=1 and f(n)=f(n1)24 f(n)=f(n-1)^{2}-4 then find the value of f(3) f(3) .\newlineAnswer:
  1. Find f(2)f(2): We are given the initial condition f(1)=1f(1) = 1 and the recursive formula f(n)=f(n1)24f(n) = f(n-1)^{2} - 4. To find f(3)f(3), we first need to find f(2)f(2). Using the recursive formula, we substitute n=2n = 2 to find f(2)f(2): f(2)=f(21)24f(2) = f(2-1)^{2} - 4 f(2)=f(1)24f(2) = f(1)^{2} - 4 f(2)=124f(2) = 1^{2} - 4 f(1)=1f(1) = 100 f(1)=1f(1) = 111
  2. Calculate f(3)f(3): Now that we have f(2)=3f(2) = -3, we can use this value to find f(3)f(3). Using the recursive formula again, we substitute n=3n = 3 to find f(3)f(3): f(3)=f(31)24f(3) = f(3-1)^{2} - 4 f(3)=f(2)24f(3) = f(2)^{2} - 4 f(3)=(3)24f(3) = (-3)^{2} - 4 f(3)=94f(3) = 9 - 4 f(3)=5f(3) = 5

More problems from Evaluate expression when two complex numbers are given