Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=1 and 
f(n)=f(n-1)^(2)-3 then find the value of 
f(4).
Answer:

If f(1)=1 f(1)=1 and f(n)=f(n1)23 f(n)=f(n-1)^{2}-3 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=1 f(1)=1 and f(n)=f(n1)23 f(n)=f(n-1)^{2}-3 then find the value of f(4) f(4) .\newlineAnswer:
  1. Given initial condition: We are given the initial condition f(1)=1f(1) = 1 and the recursive formula f(n)=f(n1)23f(n) = f(n-1)^{2} - 3. To find f(4)f(4), we need to find the values of f(2)f(2), f(3)f(3), and then f(4)f(4) using the recursive formula.
  2. Find f(2)f(2): First, let's find f(2)f(2) using the initial condition f(1)=1f(1) = 1.
    f(2)=f(1)23f(2) = f(1)^{2} - 3
    f(2)=(1)23f(2) = (1)^{2} - 3
    f(2)=13f(2) = 1 - 3
    f(2)=2f(2) = -2
  3. Find f(3)f(3): Next, we'll find f(3)f(3) using the value of f(2)f(2) we just found.\newlinef(3)=f(2)23f(3) = f(2)^{2} - 3\newlinef(3)=(2)23f(3) = (-2)^{2} - 3\newlinef(3)=43f(3) = 4 - 3\newlinef(3)=1f(3) = 1
  4. Find f(4)f(4): Now, we can find f(4)f(4) using the value of f(3)f(3).
    f(4)=f(3)23f(4) = f(3)^{2} - 3
    f(4)=(1)23f(4) = (1)^{2} - 3
    f(4)=13f(4) = 1 - 3
    f(4)=2f(4) = -2

More problems from Evaluate expression when two complex numbers are given