Q. If f(1)=1 and f(n)=f(n−1)2−3 then find the value of f(4).Answer:
Given initial condition: We are given the initial condition f(1)=1 and the recursive formula f(n)=f(n−1)2−3. To find f(4), we need to find the values of f(2), f(3), and then f(4) using the recursive formula.
Find f(2): First, let's find f(2) using the initial condition f(1)=1. f(2)=f(1)2−3 f(2)=(1)2−3 f(2)=1−3 f(2)=−2
Find f(3): Next, we'll find f(3) using the value of f(2) we just found.f(3)=f(2)2−3f(3)=(−2)2−3f(3)=4−3f(3)=1
Find f(4): Now, we can find f(4) using the value of f(3). f(4)=f(3)2−3 f(4)=(1)2−3 f(4)=1−3 f(4)=−2
More problems from Evaluate expression when two complex numbers are given