Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=1 and 
f(n)=f(n-1)^(2)+3 then find the value of 
f(3).
Answer:

If f(1)=1 f(1)=1 and f(n)=f(n1)2+3 f(n)=f(n-1)^{2}+3 then find the value of f(3) f(3) .\newlineAnswer:

Full solution

Q. If f(1)=1 f(1)=1 and f(n)=f(n1)2+3 f(n)=f(n-1)^{2}+3 then find the value of f(3) f(3) .\newlineAnswer:
  1. Find f(2)f(2): Given the recursive function f(n)=f(n1)2+3f(n) = f(n-1)^{2} + 3 and the initial condition f(1)=1f(1) = 1, we need to find f(3)f(3). We will start by finding f(2)f(2).
    f(2)=f(21)2+3f(2) = f(2-1)^{2} + 3
    f(2)=f(1)2+3f(2) = f(1)^{2} + 3
    Since we know f(1)=1f(1) = 1, we substitute this value into the equation.
    f(2)=(1)2+3f(2) = (1)^{2} + 3
    f(2)=1+3f(2) = 1 + 3
    f(n)=f(n1)2+3f(n) = f(n-1)^{2} + 300
  2. Find f(3)f(3): Now that we have f(2)f(2), we can find f(3)f(3) using the same recursive formula.\newlinef(3)=f(31)2+3f(3) = f(3-1)^{2} + 3\newlinef(3)=f(2)2+3f(3) = f(2)^{2} + 3\newlineWe already found that f(2)=4f(2) = 4, so we substitute this value into the equation.\newlinef(3)=(4)2+3f(3) = (4)^{2} + 3\newlinef(3)=16+3f(3) = 16 + 3\newlinef(3)=19f(3) = 19

More problems from Evaluate expression when a complex numbers and a variable term is given