Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=1 and 
f(n)=-2f(n-1)+n then find the value of 
f(3).
Answer:

If f(1)=1 f(1)=1 and f(n)=2f(n1)+n f(n)=-2 f(n-1)+n then find the value of f(3) f(3) .\newlineAnswer:

Full solution

Q. If f(1)=1 f(1)=1 and f(n)=2f(n1)+n f(n)=-2 f(n-1)+n then find the value of f(3) f(3) .\newlineAnswer:
  1. Given Function and Initial Value: We are given f(1)=1f(1)=1. To find f(3)f(3), we first need to find f(2)f(2) using the recursive formula f(n)=2f(n1)+nf(n)=-2f(n-1)+n.
  2. Find f(2)f(2): Using the recursive formula for n=2n=2, we get f(2)=2f(21)+2f(2)=-2f(2-1)+2.\newlineSubstitute f(1)=1f(1)=1 into the equation: f(2)=2(1)+2f(2)=-2(1)+2.
  3. Calculate f(2)f(2): Calculate the value of f(2)f(2): f(2)=2×1+2f(2)=-2\times 1+2.\newlinef(2)=2+2f(2)=-2+2.\newlinef(2)=0f(2)=0.
  4. Find f(3)f(3): Now that we have f(2)=0f(2)=0, we can use the recursive formula to find f(3)f(3).f(3)=2f(31)+3f(3)=-2f(3-1)+3. Substitute f(2)=0f(2)=0 into the equation: f(3)=2(0)+3f(3)=-2(0)+3.
  5. Calculate f(3)f(3): Calculate the value of f(3)f(3): f(3)=2×0+3f(3)=-2\times 0+3.\newlinef(3)=0+3f(3)=0+3.\newlinef(3)=3f(3)=3.

More problems from Evaluate exponential functions