Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
If
f
(
1
)
=
1
f(1)=1
f
(
1
)
=
1
and
f
(
n
)
=
−
2
f
(
n
−
1
)
+
3
f(n)=-2 f(n-1)+3
f
(
n
)
=
−
2
f
(
n
−
1
)
+
3
then find the value of
f
(
5
)
f(5)
f
(
5
)
.
\newline
Answer:
View step-by-step help
Home
Math Problems
Precalculus
Find the roots of factored polynomials
Full solution
Q.
If
f
(
1
)
=
1
f(1)=1
f
(
1
)
=
1
and
f
(
n
)
=
−
2
f
(
n
−
1
)
+
3
f(n)=-2 f(n-1)+3
f
(
n
)
=
−
2
f
(
n
−
1
)
+
3
then find the value of
f
(
5
)
f(5)
f
(
5
)
.
\newline
Answer:
Given Initial Condition:
We are given the initial condition
f
(
1
)
=
1
f(1) = 1
f
(
1
)
=
1
. We need to use the recursive formula
f
(
n
)
=
−
2
f
(
n
−
1
)
+
3
f(n) = -2f(n-1) + 3
f
(
n
)
=
−
2
f
(
n
−
1
)
+
3
to find
f
(
5
)
f(5)
f
(
5
)
.
Find
f
(
2
)
f(2)
f
(
2
)
:
First, let's find
f
(
2
)
f(2)
f
(
2
)
using the recursive formula and the initial condition
f
(
1
)
=
1
f(1) = 1
f
(
1
)
=
1
.
f
(
2
)
=
−
2
f
(
1
)
+
3
=
−
2
(
1
)
+
3
=
−
2
+
3
=
1
f(2) = -2f(1) + 3 = -2(1) + 3 = -2 + 3 = 1
f
(
2
)
=
−
2
f
(
1
)
+
3
=
−
2
(
1
)
+
3
=
−
2
+
3
=
1
.
Find
f
(
3
)
f(3)
f
(
3
)
:
Next, we'll find
f
(
3
)
f(3)
f
(
3
)
using the value of
f
(
2
)
f(2)
f
(
2
)
we just found.
f
(
3
)
=
−
2
f
(
2
)
+
3
=
−
2
(
1
)
+
3
=
−
2
+
3
=
1
f(3) = -2f(2) + 3 = -2(1) + 3 = -2 + 3 = 1
f
(
3
)
=
−
2
f
(
2
)
+
3
=
−
2
(
1
)
+
3
=
−
2
+
3
=
1
.
Find
f
(
4
)
f(4)
f
(
4
)
:
Now, let's find
f
(
4
)
f(4)
f
(
4
)
using the value of
f
(
3
)
f(3)
f
(
3
)
.
f
(
4
)
=
−
2
f
(
3
)
+
3
=
−
2
(
1
)
+
3
=
−
2
+
3
=
1
f(4) = -2f(3) + 3 = -2(1) + 3 = -2 + 3 = 1
f
(
4
)
=
−
2
f
(
3
)
+
3
=
−
2
(
1
)
+
3
=
−
2
+
3
=
1
.
Find
f
(
5
)
f(5)
f
(
5
)
:
Finally, we'll find
f
(
5
)
f(5)
f
(
5
)
using the value of
f
(
4
)
f(4)
f
(
4
)
.
f
(
5
)
=
−
2
f
(
4
)
+
3
=
−
2
(
1
)
+
3
=
−
2
+
3
=
1
f(5) = -2f(4) + 3 = -2(1) + 3 = -2 + 3 = 1
f
(
5
)
=
−
2
f
(
4
)
+
3
=
−
2
(
1
)
+
3
=
−
2
+
3
=
1
.
More problems from Find the roots of factored polynomials
Question
Find the degree of this polynomial.
\newline
`5b^{10} + 3b^3`
\newline
_______
Get tutor help
Posted 5 months ago
Question
Subtract.
\newline
(
9
a
+
5
)
−
(
2
a
+
4
)
(9a + 5) - (2a + 4)
(
9
a
+
5
)
−
(
2
a
+
4
)
\newline
____
Get tutor help
Posted 5 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
v
2
(
v
2
−
9
)
-3v^2(v^2 - 9)
−
3
v
2
(
v
2
−
9
)
\newline
________
Get tutor help
Posted 5 months ago
Question
Find the product. Simplify your answer.
\newline
(
v
−
3
)
(
4
v
+
1
)
(v - 3)(4v + 1)
(
v
−
3
)
(
4
v
+
1
)
\newline
______
Get tutor help
Posted 5 months ago
Question
Find the square. Simplify your answer.
\newline
(
3
y
+
2
)
2
(3y + 2)^2
(
3
y
+
2
)
2
\newline
______
Get tutor help
Posted 5 months ago
Question
Divide. If there is a remainder, include it as a simplified fraction.
\newline
(
24
t
2
+
36
t
)
÷
6
t
(24t^2 + 36t) \div 6t
(
24
t
2
+
36
t
)
÷
6
t
\newline
______
Get tutor help
Posted 5 months ago
Question
Is the function
q
(
x
)
=
x
6
−
9
q(x) = x^6 - 9
q
(
x
)
=
x
6
−
9
even, odd, or neither?
\newline
Choices:
\newline
[[even][odd][neither]]
\text{[[even][odd][neither]]}
[[even][odd][neither]]
Get tutor help
Posted 9 months ago
Question
Find the product. Simplify your answer.
\newline
−
3
q
2
(
−
3
q
2
+
q
)
-3q^2(-3q^2 + q)
−
3
q
2
(
−
3
q
2
+
q
)
\newline
______
Get tutor help
Posted 9 months ago
Question
Find the product. Simplify your answer.
\newline
(
r
+
3
)
(
4
r
+
2
)
(r + 3)(4r + 2)
(
r
+
3
)
(
4
r
+
2
)
\newline
______
Get tutor help
Posted 9 months ago
Question
Find the roots of the factored polynomial.
\newline
(
x
+
7
)
(
x
+
4
)
(x + 7)(x + 4)
(
x
+
7
)
(
x
+
4
)
\newline
Write your answer as a list of values separated by commas.
\newline
x
=
x =
x
=
____
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant