Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=1 and 
f(n)=-2f(n-1)+3 then find the value of 
f(5).
Answer:

If f(1)=1 f(1)=1 and f(n)=2f(n1)+3 f(n)=-2 f(n-1)+3 then find the value of f(5) f(5) .\newlineAnswer:

Full solution

Q. If f(1)=1 f(1)=1 and f(n)=2f(n1)+3 f(n)=-2 f(n-1)+3 then find the value of f(5) f(5) .\newlineAnswer:
  1. Given Initial Condition: We are given the initial condition f(1)=1f(1) = 1. We need to use the recursive formula f(n)=2f(n1)+3f(n) = -2f(n-1) + 3 to find f(5)f(5).
  2. Find f(2)f(2): First, let's find f(2)f(2) using the recursive formula and the initial condition f(1)=1f(1) = 1.
    f(2)=2f(1)+3=2(1)+3=2+3=1f(2) = -2f(1) + 3 = -2(1) + 3 = -2 + 3 = 1.
  3. Find f(3)f(3): Next, we'll find f(3)f(3) using the value of f(2)f(2) we just found.f(3)=2f(2)+3=2(1)+3=2+3=1f(3) = -2f(2) + 3 = -2(1) + 3 = -2 + 3 = 1.
  4. Find f(4)f(4): Now, let's find f(4)f(4) using the value of f(3)f(3).f(4)=2f(3)+3=2(1)+3=2+3=1f(4) = -2f(3) + 3 = -2(1) + 3 = -2 + 3 = 1.
  5. Find f(5)f(5): Finally, we'll find f(5)f(5) using the value of f(4)f(4).f(5)=2f(4)+3=2(1)+3=2+3=1f(5) = -2f(4) + 3 = -2(1) + 3 = -2 + 3 = 1.

More problems from Find the roots of factored polynomials