Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=1 and 
f(n+1)=f(n)^(2)+5 then find the value of 
f(4).
Answer:

If f(1)=1 f(1)=1 and f(n+1)=f(n)2+5 f(n+1)=f(n)^{2}+5 then find the value of f(4) f(4) .\newlineAnswer:

Full solution

Q. If f(1)=1 f(1)=1 and f(n+1)=f(n)2+5 f(n+1)=f(n)^{2}+5 then find the value of f(4) f(4) .\newlineAnswer:
  1. Given conditions: We are given the initial condition and the recursive formula:\newlinef(1)=1f(1) = 1\newlinef(n+1)=f(n)2+5f(n+1) = f(n)^{2} + 5\newlineWe need to find f(4)f(4). Let's start by finding f(2)f(2) using the recursive formula.\newlineSubstitute n=1n = 1 into the recursive formula to find f(2)f(2).\newlinef(2)=f(1)2+5f(2) = f(1)^{2} + 5\newlinef(2)=12+5f(2) = 1^2 + 5\newlinef(2)=1+5f(2) = 1 + 5\newlinef(2)=6f(2) = 6
  2. Find f(2)f(2): Now that we have f(2)f(2), let's find f(3)f(3) using the recursive formula.\newlineSubstitute n=2n = 2 into the recursive formula to find f(3)f(3).\newlinef(3)=f(2)2+5f(3) = f(2)^{2} + 5\newlinef(3)=62+5f(3) = 6^{2} + 5\newlinef(3)=36+5f(3) = 36 + 5\newlinef(3)=41f(3) = 41
  3. Find f(3)f(3): Finally, we will find f(4)f(4) using the recursive formula.\newlineSubstitute n=3n = 3 into the recursive formula to find f(4)f(4).\newlinef(4)=f(3)2+5f(4) = f(3)^{2} + 5\newlinef(4)=412+5f(4) = 41^{2} + 5\newlinef(4)=1681+5f(4) = 1681 + 5\newlinef(4)=1686f(4) = 1686

More problems from Evaluate expression when two complex numbers are given