Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(1)=1 and 
f(n+1)=f(n)^(2)+4 then find the value of 
f(3).
Answer:

If f(1)=1 f(1)=1 and f(n+1)=f(n)2+4 f(n+1)=f(n)^{2}+4 then find the value of f(3) f(3) .\newlineAnswer:

Full solution

Q. If f(1)=1 f(1)=1 and f(n+1)=f(n)2+4 f(n+1)=f(n)^{2}+4 then find the value of f(3) f(3) .\newlineAnswer:
  1. Given initial condition and formula: We are given the initial condition and the recursive formula for the function ff:f(1)=1f(1) = 1f(n+1)=f(n)2+4f(n+1) = f(n)^{2} + 4To find f(3)f(3), we first need to find f(2)f(2) using the recursive formula.Substitute n=1n=1 into the recursive formula to find f(2)f(2).f(2)=f(1)2+4f(2) = f(1)^{2} + 4f(2)=12+4f(2) = 1^2 + 4f(2)=1+4f(2) = 1 + 4f(1)=1f(1) = 100
  2. Find f(2)f(2): Now that we have f(2)f(2), we can find f(3)f(3) using the recursive formula again.\newlineSubstitute n=2n=2 into the recursive formula to find f(3)f(3).\newlinef(3)=f(2)2+4f(3) = f(2)^{2} + 4\newlinef(3)=52+4f(3) = 5^2 + 4\newlinef(3)=25+4f(3) = 25 + 4\newlinef(3)=29f(3) = 29

More problems from Evaluate expression when two complex numbers are given