Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If a=2a=2 and b=2ib=2i, then find the value of the ab3ab^{3} in fully simplified form.

Full solution

Q. If a=2a=2 and b=2ib=2i, then find the value of the ab3ab^{3} in fully simplified form.
  1. Given values substitution: We are given:\newlinea=2a = 2\newlineb=2ib = 2i\newlineWe need to find the value of the expression ab3ab^{3}.\newlineFirst, let's substitute the given values of aa and bb into the expression.\newlineab3=2×(2i)3ab^{3} = 2 \times (2i)^{3}
  2. Expression simplification: Now, let's simplify the expression (2i)3(2i)^{3}.(2i)3=(23)(i3)(2i)^{3} = (2^3) \cdot (i^3)= 8i38 \cdot i^3Since i2=1i^2 = -1, we can simplify i3i^3 as i2i=1i=ii^2 \cdot i = -1 \cdot i = -i.So, (2i)3=8i(2i)^{3} = 8 \cdot -i= 8i-8i
  3. Final simplification: Next, we multiply the result from the previous step by 22. \newline2×8i=16i2 \times -8i = -16i\newlineThis is the fully simplified form of the expression ab3ab^{3}.

More problems from Evaluate expression when two complex numbers are given