Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=9 and 
a_(n)=na_(n-1)+4 then find the value of 
a_(4).
Answer:

If a1=9 a_{1}=9 and an=nan1+4 a_{n}=n a_{n-1}+4 then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=9 a_{1}=9 and an=nan1+4 a_{n}=n a_{n-1}+4 then find the value of a4 a_{4} .\newlineAnswer:
  1. Given Information: We are given the first term of the sequence, a1=9a_{1}=9, and a recursive formula for the nnth term: an=nan1+4a_{n}=na_{n-1}+4. To find a4a_{4}, we need to find the values of a2a_{2}, a3a_{3}, and then a4a_{4} using the recursive formula.
  2. Find a2a_{2}: First, let's find a2a_{2} using the recursive formula. We know that a1=9a_{1}=9, so we substitute n=2n=2 and a1=9a_{1}=9 into the formula to get a2=2a1+4a_{2}=2\cdot a_{1}+4.\newlineCalculation: a2=29+4=18+4=22a_{2}=2\cdot 9+4=18+4=22.
  3. Find a3a_{3}: Next, we find a3a_{3} using the recursive formula. We now know that a2=22a_{2}=22, so we substitute n=3n=3 and a2=22a_{2}=22 into the formula to get a3=3a2+4a_{3}=3\cdot a_{2}+4.\newlineCalculation: a3=322+4=66+4=70a_{3}=3\cdot 22+4=66+4=70.
  4. Find a4a_{4}: Finally, we find a4a_{4} using the recursive formula. We know that a3=70a_{3}=70, so we substitute n=4n=4 and a3=70a_{3}=70 into the formula to get a4=4a3+4a_{4}=4\cdot a_{3}+4.\newlineCalculation: a4=470+4=280+4=284a_{4}=4\cdot 70+4=280+4=284.

More problems from Find the roots of factored polynomials