Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=9 and 
a_(n)=na_(n-1)+1 then find the value of 
a_(5).
Answer:

If a1=9 a_{1}=9 and an=nan1+1 a_{n}=n a_{n-1}+1 then find the value of a5 a_{5} .\newlineAnswer:

Full solution

Q. If a1=9 a_{1}=9 and an=nan1+1 a_{n}=n a_{n-1}+1 then find the value of a5 a_{5} .\newlineAnswer:
  1. Given terms: We are given the first term of the sequence, a1=9a_{1}=9, and a recursive formula for the nnth term: an=nan1+1a_{n}=na_{n-1}+1. To find a5a_{5}, we need to find the values of a2a_{2}, a3a_{3}, a4a_{4}, and then a5a_{5} using the recursive formula.
  2. Find a2a_{2}: First, let's find a2a_{2} using the recursive formula. We know that a1=9a_{1}=9, so: a2=2×a1+1=2×9+1=18+1=19a_{2} = 2 \times a_{1} + 1 = 2 \times 9 + 1 = 18 + 1 = 19.
  3. Find a3a_{3}: Next, we find a3a_{3} using the value of a2a_{2} we just found:\newlinea3=3×a2+1=3×19+1=57+1=58a_{3} = 3 \times a_{2} + 1 = 3 \times 19 + 1 = 57 + 1 = 58.
  4. Find a4a_{4}: Now, we find a4a_{4} using the value of a3a_{3}:a4=4×a3+1=4×58+1=232+1=233a_{4} = 4 \times a_{3} + 1 = 4 \times 58 + 1 = 232 + 1 = 233.
  5. Find a5a_{5}: Finally, we find a5a_{5} using the value of a4a_{4}:a5=5×a4+1=5×233+1=1165+1=1166a_{5} = 5 \times a_{4} + 1 = 5 \times 233 + 1 = 1165 + 1 = 1166.

More problems from Find the roots of factored polynomials