Q. If a1=9 and an=nan−1+1 then find the value of a5.Answer:
Given terms: We are given the first term of the sequence, a1=9, and a recursive formula for the nth term: an=nan−1+1. To find a5, we need to find the values of a2, a3, a4, and then a5 using the recursive formula.
Find a2: First, let's find a2 using the recursive formula. We know that a1=9, so: a2=2×a1+1=2×9+1=18+1=19.
Find a3: Next, we find a3 using the value of a2 we just found:a3=3×a2+1=3×19+1=57+1=58.
Find a4: Now, we find a4 using the value of a3:a4=4×a3+1=4×58+1=232+1=233.
Find a5: Finally, we find a5 using the value of a4:a5=5×a4+1=5×233+1=1165+1=1166.
More problems from Find the roots of factored polynomials