Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=9 and 
a_(n)=3a_(n-1)-3 then find the value of 
a_(5).
Answer:

If a1=9 a_{1}=9 and an=3an13 a_{n}=3 a_{n-1}-3 then find the value of a5 a_{5} .\newlineAnswer:

Full solution

Q. If a1=9 a_{1}=9 and an=3an13 a_{n}=3 a_{n-1}-3 then find the value of a5 a_{5} .\newlineAnswer:
  1. Find a2a_{2}: Use the given recursive formula to find a2a_{2}. The recursive formula is an=3an13a_{n}=3a_{n-1}-3. We know that a1=9a_{1}=9, so we can find a2a_{2} by plugging n=2n=2 into the formula. a2=3a213=3a13=3×93=273=24a_{2} = 3a_{2-1} - 3 = 3a_{1} - 3 = 3\times9 - 3 = 27 - 3 = 24.
  2. Find a3a_{3}: Use the recursive formula to find a3a_{3}. Now that we have a2a_{2}, we can find a3a_{3} by plugging n=3n=3 into the formula. a3=3a313=3a23=3×243=723=69a_{3} = 3a_{3-1} - 3 = 3a_{2} - 3 = 3\times24 - 3 = 72 - 3 = 69.
  3. Find a4a_{4}: Use the recursive formula to find a4a_{4}. With a3a_{3} found, we can find a4a_{4} by plugging n=4n=4 into the formula. a4=3a413=3a33=3×693=2073=204a_{4} = 3a_{4-1} - 3 = 3a_{3} - 3 = 3\times69 - 3 = 207 - 3 = 204.
  4. Find a5a_{5}: Use the recursive formula to find a5a_{5}. Finally, we can find a5a_{5} by plugging n=5n=5 into the formula. a5=3a513=3a43=3×2043=6123=609a_{5} = 3a_{5-1} - 3 = 3a_{4} - 3 = 3\times204 - 3 = 612 - 3 = 609.

More problems from Find the roots of factored polynomials